# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import torch from executorch.backends.xnnpack._passes.fuse_activation_pass import FuseActivationPass from executorch.backends.xnnpack.operators.node_visitor import ( get_input_node, NodeVisitor, register_node_visitor, ) from executorch.backends.xnnpack.operators.quant_params import QuantParams from executorch.backends.xnnpack.serialization.xnnpack_graph_schema import ( XNNFullyConnected, XNNGraph, XNode, ) from executorch.backends.xnnpack.utils.xnnpack_constants import XNN_INVALID_VALUE_ID @register_node_visitor class LinearVisitor(NodeVisitor): target = "aten.linear.default" def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, xnn_graph: XNNGraph, vals_to_ids: Dict[torch.fx.Node, int], debug_handle: int, ) -> None: # input input_node = get_input_node(node, 0) input_quant_params = QuantParams.from_inputs(input_node, self._exported_program) self.define_tensor( input_node, xnn_graph, vals_to_ids, quant_params=input_quant_params, ) input_id = vals_to_ids[input_node] # filter weight_node = get_input_node(node, 1) weight_quant_params = QuantParams.from_weights( weight_node, self._exported_program ) self.define_tensor( weight_node, xnn_graph, vals_to_ids, quant_params=weight_quant_params, fp32_static_weights=True, ) filter_id = vals_to_ids[weight_node] # bias if len(node.args) > 2: bias_node = get_input_node(node, 2) bias_quant_params = QuantParams.from_bias( bias_node, weight_quant_params, input_quant_params ) self.define_tensor( get_input_node(node, 2), xnn_graph, vals_to_ids, quant_params=bias_quant_params, fp32_static_weights=True, ) bias_id = vals_to_ids[bias_node] else: bias_id = XNN_INVALID_VALUE_ID # output output_min_max = FuseActivationPass.get_fused_activation(node) output_quant_params = QuantParams.from_outputs(node) self.define_tensor( node, xnn_graph, vals_to_ids, quant_params=output_quant_params, ) output_id = vals_to_ids[node] ser_node = XNode( xnode_union=XNNFullyConnected( input1_id=input_id, filter_id=filter_id, bias_id=bias_id, output_id=output_id, flags=0, ), debug_handle=debug_handle, output_min_max=output_min_max, ) xnn_graph.xnodes.append(ser_node)