# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import torch from executorch.backends.xnnpack.operators.node_visitor import ( NodeVisitor, register_node_visitor, ) from executorch.backends.xnnpack.operators.quant_params import QuantParams from executorch.backends.xnnpack.serialization.xnnpack_graph_schema import ( OutputMinMax, XNNGraph, XNNMultiply, XNode, ) from executorch.backends.xnnpack.utils.utils import get_input_node, get_relu_fused_node from executorch.exir.dialects._ops import ops as exir_ops @register_node_visitor class MultiplyVisitor(NodeVisitor): target = "aten.mul.Tensor" def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, xnn_graph: XNNGraph, vals_to_ids: Dict[torch.fx.Node, int], debug_handle: int, ) -> None: # input1 input1 = get_input_node(node, 0) self.define_tensor( input1, xnn_graph, vals_to_ids, quant_params=QuantParams.from_inputs(input1, self._exported_program), ) input1_id = vals_to_ids[input1] # input2 input2 = get_input_node(node, 1) self.define_tensor( input2, xnn_graph, vals_to_ids, quant_params=QuantParams.from_inputs(input2, self._exported_program), ) input2_id = vals_to_ids[input2] # output output_node = get_relu_fused_node(node) or node output_min_max = None # if fused with relu if output_node.target == exir_ops.edge.aten.relu.default: output_node.meta["XNNPACK_FUSED"] = True output_min_max = OutputMinMax(output_min=0, output_max="+inf") self.define_tensor( output_node, xnn_graph, vals_to_ids, quant_params=QuantParams.from_outputs(output_node), ) output_id = vals_to_ids[output_node] ser_node = XNode( xnode_union=XNNMultiply( input1_id=input1_id, input2_id=input2_id, output_id=output_id, flags=0 ), debug_handle=debug_handle, output_min_max=output_min_max, ) xnn_graph.xnodes.append(ser_node)