# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import torch from executorch.backends.transforms import get_shape from executorch.backends.xnnpack.operators.node_visitor import ( get_tensor_value, NodeVisitor, register_node_visitor, ) from executorch.backends.xnnpack.operators.quant_params import QuantParams from executorch.backends.xnnpack.serialization.xnnpack_graph_schema import ( XNNGraph, XNNStaticTranspose, XNode, ) from executorch.backends.xnnpack.utils.utils import ( check_or_raise, get_input_node, PERM_NCHW_TO_NHWC, PERM_NHWC_TO_NCHW, ) @register_node_visitor class ConvertMemoryFormat(NodeVisitor): target = "aten._to_copy.default" def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, xnn_graph: XNNGraph, vals_to_ids: Dict[torch.fx.Node, int], debug_handle: int, ) -> None: memory_format_target = node.kwargs.get("memory_format", torch.contiguous_format) to_channels_last = bool(memory_format_target == torch.channels_last) to_contiguous = bool(memory_format_target == torch.contiguous_format) check_or_raise( to_channels_last or to_contiguous, "Unsupported Memory Format for XNNPACK", ) input_node = get_input_node(node, 0) input_quant_params = QuantParams.from_inputs(input_node, self._exported_program) output_quant_params = QuantParams.from_outputs(node) permute_order = PERM_NCHW_TO_NHWC if to_channels_last else PERM_NHWC_TO_NCHW self.define_tensor( input_node, xnn_graph, vals_to_ids, quant_params=input_quant_params, convert_to_nhwc=( (not to_channels_last) and len(get_shape(input_node)) == 4 ), # input is contiguous if converting out of channels last ) self.define_tensor( node, xnn_graph, vals_to_ids, quant_params=output_quant_params, convert_to_nhwc=to_channels_last, # output is channels last if converting into channels last ) input_id = vals_to_ids[get_input_node(node, 0)] output_id = vals_to_ids[node] new_shape = get_tensor_value(xnn_graph.xvalues[output_id]).dims ser_node = XNode( xnode_union=XNNStaticTranspose( num_dims=len(new_shape), perm=permute_order, input_id=input_id, output_id=output_id, flags=0, ), debug_handle=debug_handle, ) xnn_graph.xnodes.append(ser_node)