# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # Example script for exporting simple models to flatbuffer import logging import torch from executorch.backends.cadence.aot.ops_registrations import * # noqa from executorch.backends.cadence.aot.export_example import export_model FORMAT = "[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s" logging.basicConfig(level=logging.INFO, format=FORMAT) if __name__ == "__main__": in_features = 32 out_features = 16 bias = True shape = [64, in_features] class QuantizedLinear(torch.nn.Module): def __init__(self, in_features: int, out_features: int, bias: bool): super().__init__() self.output_linear = torch.nn.Linear(in_features, out_features, bias=bias) def forward(self, x: torch.Tensor): output_linear_out = self.output_linear(x) return output_linear_out model = QuantizedLinear(in_features, out_features, bias) model.eval() example_inputs = (torch.ones(shape),) export_model(model, example_inputs)