# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch LLaMA model.""" import numpy as np import torch from models.llm_models.configuration_llama import LlamaConfig from models.llm_models.modeling_common import Attention, DecoderLayer, MLP, ModelChunk np.random.seed(42) class LlamaMLP(MLP): def __init__(self, config: LlamaConfig): super().__init__(config) class LlamaAttention(Attention): def __init__(self, config: LlamaConfig): super().__init__(config) class LlamaDecoderLayer(DecoderLayer): def __init__( self, config: LlamaConfig, return_attn=False, jit_trace=False, ): super().__init__( config, return_attn, jit_trace, attn_class=LlamaAttention, mlp_class=LlamaMLP, ) class LlamaModelChunk(ModelChunk): def __init__( self, config: LlamaConfig, num_blocks, chunk_idx, dtype=torch.float32, include_tail=False, return_attn=False, jit_trace=False, ): super().__init__( config, num_blocks, chunk_idx, dtype, include_tail, return_attn, jit_trace, decoder_class=LlamaDecoderLayer, )