# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """ Sample inputs for Core ATen ops in Portable Kernel Library """ import torch from executorch.exir.dialects.edge.arg.model import InArg, InKwarg, Return from executorch.exir.dialects.edge.arg.type import ArgType SAMPLE_INPUT = { "_log_softmax.default": { # (Tensor self, int dim, bool half_to_float) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), InArg(ArgType.Param, value=False), ], "returns": [ Return(ArgType.Tensor), ], }, "_native_batch_norm_legit_no_training.default": { # (Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, float momentum, float eps) -> (Tensor, Tensor, Tensor) "args": [ InArg(ArgType.Tensor, size=[2, 3, 4, 5]), InArg(ArgType.TensorOpt, size=[3]), InArg(ArgType.TensorOpt, size=[3]), InArg(ArgType.Tensor, size=[3]), InArg(ArgType.Tensor, size=[3]), InArg(ArgType.Param, value=0.1), InArg(ArgType.Param, value=1e-8), ], "returns": [ Return(ArgType.Tensor, argname="__ret0", size=[2, 3, 4, 5]), Return(ArgType.Tensor, argname="__ret1", size=[0]), Return(ArgType.Tensor, argname="__ret2", size=[0]), ], }, "_softmax.default": { # (Tensor self, int dim, bool half_to_float) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), InArg(ArgType.Param, value=False), ], "returns": [ Return(ArgType.Tensor), ], }, "_to_copy.default": { # (Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor "args": [ InArg(ArgType.Tensor), InKwarg(ArgType.Param, "non_blocking", value=False), InKwarg(ArgType.ScalarTypeOpt, "dtype"), InKwarg(ArgType.Param, "memory_format", value=None), ], "returns": [ Return(ArgType.Tensor), ], }, "abs.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "acos.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "acosh.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "add.Tensor": { # (Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), InKwarg(ArgType.Scalar, "alpha"), ], "returns": [ Return(ArgType.Tensor), ], }, "add.Scalar": { # (Tensor self, Scalar other, Scalar alpha=1) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar), InArg(ArgType.Scalar), ], "returns": [ Return(ArgType.Tensor), ], }, "addmm.default": { # (Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), InArg(ArgType.Tensor), InKwarg(ArgType.Scalar, "beta"), InKwarg(ArgType.Scalar, "alpha"), ], "returns": [ Return(ArgType.Tensor), ], }, "alias_copy.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "amax.default": { # (Tensor self, int[1] dim=[], bool keepdim=False) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=[0]), InArg(ArgType.Param, value=True), ], "returns": [ Return(ArgType.Tensor, size=(1, 2)), ], }, "amin.default": { # (Tensor self, int[1] dim=[], bool keepdim=False) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=[0]), InArg(ArgType.Param, value=True), ], "returns": [ Return(ArgType.Tensor, size=(1, 2)), ], }, "any.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor, dtype=torch.bool), ], "returns": [ Return(ArgType.Tensor, size=[], dtype=torch.bool), ], }, "arange.default": { # (Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor "args": [ InArg(ArgType.Scalar, value=1), InKwarg(ArgType.ScalarTypeOpt, "dtype"), ], "returns": [Return(ArgType.Tensor, size=[1])], }, "arange.start_step": { # (Scalar start, Scalar end, Scalar step=1, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor "args": [ InArg(ArgType.Scalar, value=0), InArg(ArgType.Scalar, value=1), InArg(ArgType.Scalar, value=1), InKwarg(ArgType.ScalarTypeOpt, "dtype"), ], "returns": [ Return(ArgType.Tensor, size=[1]), ], }, "argmax.default": { # (Tensor self, int? dim=None, bool keepdim=False) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=1), InArg(ArgType.Param, value=False), ], "returns": [ Return(ArgType.Tensor, size=[2], dtype=torch.long), ], }, "argmin.default": { # (Tensor self, int? dim=None, bool keepdim=False) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=1), InArg(ArgType.Param, value=False), ], "returns": [ Return(ArgType.Tensor, size=[2], dtype=torch.long), ], }, "as_strided_copy.default": { # (Tensor self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=[4]), InArg(ArgType.Param, value=[1]), InArg(ArgType.Param, value=None), ], "returns": [ Return(ArgType.Tensor, size=[4]), ], }, "asin.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "asinh.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "atan.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "atanh.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "avg_pool2d.default": { # (Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor "args": [ InArg(ArgType.Tensor, size=[2, 3, 14, 12]), InArg(ArgType.Param, value=[4, 2]), InArg(ArgType.Param, value=[1, 2]), InArg(ArgType.Param, value=[1, 1]), InArg(ArgType.Param, value=True), InArg(ArgType.Param, value=False), InArg(ArgType.Param, value=None), ], "returns": [ Return(ArgType.Tensor, size=[2, 3, 13, 7]), ], }, "bitwise_and.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor, dtype=torch.bool), InArg(ArgType.Scalar, dtype=torch.bool), ], "returns": [ Return(ArgType.Tensor, dtype=torch.bool), ], }, "bitwise_and.Tensor": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor, dtype=torch.bool), InArg(ArgType.Tensor, dtype=torch.bool), ], "returns": [ Return(ArgType.Tensor, dtype=torch.bool), ], }, "bitwise_not.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor, dtype=torch.bool), ], "returns": [ Return(ArgType.Tensor, dtype=torch.bool), ], }, "bitwise_or.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor, dtype=torch.bool), InArg(ArgType.Scalar, dtype=torch.bool), ], "returns": [ Return(ArgType.Tensor, dtype=torch.bool), ], }, "bitwise_or.Tensor": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor, dtype=torch.bool), InArg(ArgType.Tensor, dtype=torch.bool), ], "returns": [ Return(ArgType.Tensor, dtype=torch.bool), ], }, "bitwise_xor.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor, dtype=torch.bool), InArg(ArgType.Scalar, dtype=torch.bool), ], "returns": [ Return(ArgType.Tensor, dtype=torch.bool), ], }, "bitwise_xor.Tensor": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor, dtype=torch.bool), InArg(ArgType.Tensor, dtype=torch.bool), ], "returns": [ Return(ArgType.Tensor, dtype=torch.bool), ], }, "bmm.default": { # (Tensor self, Tensor mat2) -> Tensor "args": [ InArg(ArgType.Tensor, size=[1, 2, 2]), InArg(ArgType.Tensor, size=[1, 2, 2]), ], "returns": [ Return(ArgType.Tensor, size=[1, 2, 2]), ], }, "cat.default": { # (Tensor[] tensors, int dim=0) -> Tensor "args": [ InArg( ArgType.TensorList, value=[InArg(ArgType.Tensor), InArg(ArgType.Tensor)] ), InArg(ArgType.Param, value=0), ], "returns": [ Return(ArgType.Tensor, size=[4, 2]), ], }, "ceil.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "clamp.default": { # (Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.ScalarOpt, bounded=True), InArg(ArgType.ScalarOpt, bounded=True), ], "returns": [ Return(ArgType.Tensor), ], }, "clone.default": { # (Tensor self, *, MemoryFormat? memory_format=None) -> Tensor "args": [ InArg(ArgType.Tensor), InKwarg(ArgType.Param, "memory_format", value=None), ], "returns": [ Return(ArgType.Tensor), ], }, "constant_pad_nd.default": { # (Tensor self, SymInt[] pad, Scalar value=0) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=[1, 0, 0, 1]), InArg(ArgType.Scalar, bounded=True), ], "returns": [ Return(ArgType.Tensor, size=[3, 3]), ], }, "convolution.default": { # (Tensor input, Tensor weight, Tensor? bias, int[] stride, SymInt[] padding, int[] dilation, bool transposed, SymInt[] output_padding, int groups) -> Tensor "args": [ InArg(ArgType.Tensor, size=[1, 2, 5]), InArg(ArgType.Tensor, size=[4, 2, 3]), InArg(ArgType.TensorOpt, size=[4]), InArg(ArgType.Param, value=[2]), InArg(ArgType.Param, value=[2]), InArg(ArgType.Param, value=[1]), InArg(ArgType.Param, value=False), InArg(ArgType.Param, value=[0]), InArg(ArgType.Param, value=1), ], "returns": [ Return(ArgType.Tensor, size=[1, 4, 4]), ], }, "copy.default": { # (Tensor self, Tensor src, bool non_blocking=False) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), InArg(ArgType.Param, value=False), ], "returns": [ Return(ArgType.Tensor), ], }, "cos.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "cosh.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "cumsum.default": { # (Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), InKwarg(ArgType.ScalarTypeOpt, "dtype"), ], "returns": [ Return(ArgType.Tensor), ], }, "detach_copy.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "div.Tensor": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "div.Tensor_mode": { # (Tensor self, Tensor other, *, str? rounding_mode) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), InKwarg(ArgType.Param, "rounding_mode", value="floor"), ], "returns": [Return(ArgType.Tensor)], }, "div.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar), ], "returns": [Return(ArgType.Tensor)], }, "embedding.default": { # (Tensor weight, Tensor indices, SymInt padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor, value=[[0, 1], [1, 0]], dtype=torch.long), InArg(ArgType.Param, value=-1), InArg(ArgType.Param, value=False), InArg(ArgType.Param, value=False), ], "returns": [ Return(ArgType.Tensor, size=[2, 2, 2]), ], }, "empty.memory_format": { # (SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor "args": [ InArg(ArgType.Param, value=[2, 2]), InKwarg(ArgType.Param, "memory_format", value=None), InKwarg(ArgType.ScalarTypeOpt, "dtype"), ], "returns": [ Return(ArgType.Tensor, fill=3), ], }, "eq.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar), ], "returns": [Return(ArgType.Tensor)], }, "erf.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "exp.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "expand_copy.default": { # (Tensor self, SymInt[] size, *, bool implicit=False) -> Tensor "args": [ InArg(ArgType.Tensor, size=[2, 1]), InArg(ArgType.Param, value=[-1, 3]), InKwarg(ArgType.Param, "implicit", value=False), ], "returns": [ Return(ArgType.Tensor, size=[2, 3]), ], }, "fill.Scalar": { # (Tensor self, Scalar value) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar, bounded=True), ], "returns": [ Return(ArgType.Tensor), ], }, "fill.Tensor": { # (Tensor self, Tensor value) -> Tensor "args": [ InArg(ArgType.Tensor), InArg( ArgType.Tensor, size=[], bounded=True, ), ], "returns": [ Return(ArgType.Tensor), ], }, "floor.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "floor_divide.default": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor, nonzero=True), ], "returns": [ Return(ArgType.Tensor), ], }, "fmod.Tensor": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor, nonzero=True), ], "returns": [ Return(ArgType.Tensor), ], }, "fmod.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar, value=1), ], "returns": [ Return(ArgType.Tensor), ], }, "full.default": { # (SymInt[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor "args": [ InArg(ArgType.Param, value=[2, 2]), InArg(ArgType.Scalar, bounded=True), InKwarg(ArgType.ScalarTypeOpt, "dtype"), ], "returns": [ Return(ArgType.Tensor), ], }, "full_like.default": { # (Tensor self, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar, bounded=True), InKwarg(ArgType.ScalarTypeOpt, "dtype"), InKwarg(ArgType.Param, "memory_format", value=None), ], "returns": [ Return(ArgType.Tensor), ], }, "ge.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar), ], "returns": [Return(ArgType.Tensor)], }, "ge.Tensor": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "gelu.default": { # (Tensor self, *, str approximate="none") -> Tensor "args": [ InArg(ArgType.Tensor), InKwarg( ArgType.Param, "approximate", value="none", ), ], "returns": [ Return(ArgType.Tensor), ], }, "glu.default": { # (Tensor self, int dim=-1) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), ], "returns": [ Return(ArgType.Tensor, size=[1, 2]), ], }, "gt.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar), ], "returns": [Return(ArgType.Tensor)], }, "gt.Tensor": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "hardtanh.default": { # (Tensor self, Scalar min_val=-1, Scalar max_val=1) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar, bounded=True), InArg(ArgType.Scalar, bounded=True), ], "returns": [ Return(ArgType.Tensor), ], }, "index.Tensor": { # (Tensor self, Tensor?[] indices) -> Tensor "args": [ InArg(ArgType.Tensor), InArg( ArgType.TensorOptList, value=[ InArg(ArgType.Tensor, value=[0, 1]), InArg(ArgType.Tensor, value=[1, 1]), ], dtype=torch.long, ), ], "returns": [ Return(ArgType.Tensor, size=[2]), ], }, "index_put.default": { # (Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor "args": [ InArg(ArgType.Tensor), InArg( ArgType.TensorOptList, value=[ InArg(ArgType.Tensor, value=[0, 1]), InArg(ArgType.Tensor, value=[1, 1]), ], dtype=torch.long, ), InArg(ArgType.Tensor, size=[2]), InArg(ArgType.Param, value=False), ], "returns": [ Return(ArgType.Tensor), ], }, "index_select.default": { # (Tensor self, int dim, Tensor index) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), InArg(ArgType.Tensor, value=[1], dtype=torch.long), ], "returns": [ Return(ArgType.Tensor, size=[1, 2]), ], }, "isinf.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor, dtype=torch.bool)], }, "isnan.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor, dtype=torch.bool)], }, "le.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar), ], "returns": [Return(ArgType.Tensor)], }, "le.Tensor": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "leaky_relu.default": { # (Tensor self, Scalar negative_slope=0.01) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar), ], "returns": [Return(ArgType.Tensor)], }, "lift_fresh_copy.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "log.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "logical_and.default": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "logical_not.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "logical_or.default": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "logical_xor.default": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "logit.default": { # (Tensor self, float? eps=None) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0.1), ], "returns": [ Return(ArgType.Tensor), ], }, "lt.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar), ], "returns": [Return(ArgType.Tensor)], }, "lt.Tensor": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "masked_fill.Scalar": { # (Tensor self, Tensor mask, Scalar value) -> Tensor "args": [ InArg(ArgType.Tensor), InArg( ArgType.Tensor, value=[[True, False], [False, True]], dtype=torch.bool ), InArg(ArgType.Scalar, bounded=True), ], "returns": [ Return(ArgType.Tensor), ], }, "max.dim": { # (Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), InArg(ArgType.Param, value=False), ], "returns": [ Return(ArgType.Tensor, argname="values", size=[2]), Return(ArgType.Tensor, argname="indices", size=[2], dtype=torch.long), ], }, "max_pool2d_with_indices.default": { # (Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor) "args": [ InArg(ArgType.Tensor, size=[2, 12, 12]), InArg(ArgType.Param, value=[4, 3]), InArg(ArgType.Param, value=[3, 2]), InArg(ArgType.Param, value=[2, 1]), InArg(ArgType.Param, value=[1, 2]), InArg(ArgType.Param, value=False), ], "returns": [ Return(ArgType.Tensor, size=[2, 5, 5]), Return(ArgType.Tensor, size=[2, 5, 5], dtype=torch.long), ], }, "mean.dim": { # (Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=[0]), InArg(ArgType.Param, value=False), InKwarg(ArgType.ScalarTypeOpt, "dtype"), ], "returns": [ Return(ArgType.Tensor, size=[2]), ], }, "min.dim": { # (Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), InArg(ArgType.Param, value=False), ], "returns": [ Return(ArgType.Tensor, argname="values", size=[2]), Return(ArgType.Tensor, argname="indices", size=[2], dtype=torch.long), ], }, "minimum.default": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "mm.default": { # (Tensor self, Tensor mat2) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "mul.Tensor": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "mul.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar), ], "returns": [Return(ArgType.Tensor)], }, "native_layer_norm.default": { # (Tensor input, SymInt[] normalized_shape, Tensor? weight, Tensor? bias, float eps) -> (Tensor, Tensor, Tensor) "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=[2]), InArg(ArgType.TensorOpt, size=[2]), InArg(ArgType.TensorOpt, size=[2]), InArg(ArgType.Param, value=1e-5), ], "returns": [ Return(ArgType.Tensor, argname="__ret0"), Return(ArgType.Tensor, argname="__ret1", size=[2, 1]), Return(ArgType.Tensor, argname="__ret2", size=[2, 1]), ], }, "ne.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar), ], "returns": [Return(ArgType.Tensor)], }, "ne.Tensor": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "neg.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "nonzero.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor, value=[[1, 0], [0, 1]]), ], "returns": [ Return(ArgType.Tensor, dtype=torch.long), ], }, "ones.default": { # (SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor "args": [ InArg(ArgType.Param, value=[2, 2]), InKwarg(ArgType.ScalarTypeOpt, "dtype"), ], "returns": [Return(ArgType.Tensor, fill=3)], }, "permute_copy.default": { # (Tensor self, int[] dims) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=[1, 0]), ], "returns": [ Return(ArgType.Tensor), ], }, "pixel_shuffle.default": { # (Tensor self, int upscale_factor) -> Tensor "args": [ InArg(ArgType.Tensor, size=[2, 4, 1, 3]), InArg(ArgType.Param, value=2), ], "returns": [ Return(ArgType.Tensor, size=[2, 1, 2, 6]), ], }, "pow.Tensor_Scalar": { # (Tensor self, Scalar exponent) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar, value=2), ], "returns": [ Return(ArgType.Tensor), ], }, "pow.Tensor_Tensor": { # (Tensor self, Tensor exponent) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "reciprocal.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "relu.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "remainder.Tensor": { # (Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor, nonzero=True), ], "returns": [ Return(ArgType.Tensor), ], }, "remainder.Scalar": { # (Tensor self, Scalar other) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar, value=1), ], "returns": [ Return(ArgType.Tensor), ], }, "repeat.default": { # (Tensor self, SymInt[] repeats) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=[1, 2]), ], "returns": [ Return(ArgType.Tensor, size=[2, 4]), ], }, "round.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "rsqrt.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "rsub.Scalar": { # (Tensor self, Scalar other, Scalar alpha=1) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar), InArg(ArgType.Scalar), ], "returns": [ Return(ArgType.Tensor), ], }, "scalar_tensor.default": { # (Scalar s, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor "args": [ InArg(ArgType.Scalar, bounded=True), InKwarg(ArgType.ScalarTypeOpt, "dtype"), ], "returns": [Return(ArgType.Tensor, size=[])], }, "scatter_add.default": { # (Tensor self, int dim, Tensor index, Tensor src) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), InArg(ArgType.Tensor, value=[[0, 1]], dtype=torch.long), InArg(ArgType.Tensor), ], "returns": [ Return(ArgType.Tensor), ], }, "select_copy.int": { # (Tensor self, int dim, SymInt index) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), InArg(ArgType.Param, value=1), ], "returns": [ Return(ArgType.Tensor, size=[2]), ], }, "select_scatter.default": { # (Tensor self, Tensor src, int dim, SymInt index) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor, size=[2]), InArg(ArgType.Param, value=0), InArg(ArgType.Param, value=1), ], "returns": [ Return(ArgType.Tensor), ], }, "sigmoid.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "sign.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "sin.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "sinh.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "slice_copy.Tensor": { # (Tensor self, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), InArg(ArgType.Param, value=None), InArg(ArgType.Param, value=None), InArg(ArgType.Param, value=1), ], "returns": [ Return(ArgType.Tensor), ], }, "slice_scatter.default": { # (Tensor self, Tensor src, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), InArg(ArgType.Param, value=None), InArg(ArgType.Param, value=None), InArg(ArgType.Param, value=1), ], "returns": [ Return(ArgType.Tensor), ], }, "split_copy.Tensor": { # (Tensor self, SymInt split_size, int dim=0) -> Tensor[] "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=1), InArg(ArgType.Param, value=0), ], "returns": [ Return( ArgType.TensorList, value=[ Return(ArgType.Tensor, size=[1, 2]), Return(ArgType.Tensor, size=[1, 2]), ], ), ], }, "split_with_sizes_copy.default": { # (Tensor self, SymInt[] split_sizes, int dim=0) -> Tensor[] "args": [ InArg(ArgType.Tensor, size=[2, 6, 3]), InArg(ArgType.Param, value=[3, 1, 2]), InArg(ArgType.Param, value=1), ], "returns": [ Return( ArgType.TensorList, value=[ Return(ArgType.Tensor, size=[2, 3, 3]), Return(ArgType.Tensor, size=[2, 1, 3]), Return(ArgType.Tensor, size=[2, 2, 3]), ], ), ], }, "sqrt.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "squeeze_copy.dim": { # (Tensor self, int dim) -> Tensor "args": [ InArg(ArgType.Tensor, size=[1, 2]), InArg(ArgType.Param, value=0), ], "returns": [ Return(ArgType.Tensor, size=[2]), ], }, "squeeze_copy.dims": { # (Tensor self, int[] dims) -> Tensor "args": [ InArg(ArgType.Tensor, size=[1, 2, 1, 5]), InArg(ArgType.Param, value=[0, 2]), ], "returns": [ Return(ArgType.Tensor, size=[2, 5]), ], }, "stack.default": { # (Tensor[] tensors, int dim=0) -> Tensor "args": [ InArg( ArgType.TensorList, value=[ InArg(ArgType.Tensor), InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], ), InArg(ArgType.Param, value=0), ], "returns": [ Return(ArgType.Tensor, size=[3, 2, 2]), ], }, "sub.Tensor": { # (Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Tensor), InKwarg(ArgType.Scalar, "alpha"), ], "returns": [ Return(ArgType.Tensor), ], }, "sub.Scalar": { # (Tensor self, Scalar other, Scalar alpha=1) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Scalar), InArg(ArgType.Scalar), ], "returns": [ Return(ArgType.Tensor), ], }, "sum.dim_IntList": { # (Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=[0]), InArg(ArgType.Param, value=False), InKwarg(ArgType.ScalarTypeOpt, "dtype"), ], "returns": [ Return(ArgType.Tensor, size=[2]), ], }, "t_copy.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "tan.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "tanh.default": { # (Tensor self) -> Tensor "args": [ InArg(ArgType.Tensor), ], "returns": [Return(ArgType.Tensor)], }, "transpose_copy.int": { # (Tensor self, int dim0, int dim1) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), InArg(ArgType.Param, value=1), ], "returns": [ Return(ArgType.Tensor), ], }, "tril.default": { # (Tensor self, int diagonal=0) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), ], "returns": [ Return(ArgType.Tensor), ], }, "unbind_copy.int": { # (Tensor self, int dim=0) -> Tensor[] "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=0), ], "returns": [ Return( ArgType.TensorList, value=[ Return(ArgType.Tensor, size=[2]), Return(ArgType.Tensor, size=[2]), ], ), ], }, "unsqueeze_copy.default": { # (Tensor self, int dim) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=1), ], "returns": [ Return(ArgType.Tensor, size=[2, 1, 2]), ], }, "var.dim": { # (Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=[0]), InArg(ArgType.Param, value=True), InArg(ArgType.Param, value=False), ], "returns": [ Return(ArgType.Tensor, size=[2]), ], }, "view_copy.default": { # (Tensor self, SymInt[] size) -> Tensor "args": [ InArg(ArgType.Tensor), InArg(ArgType.Param, value=[4]), ], "returns": [ Return(ArgType.Tensor, size=[4]), ], }, "where.self": { # (Tensor condition, Tensor self, Tensor other) -> Tensor "args": [ InArg(ArgType.Tensor, dtype=torch.bool), InArg(ArgType.Tensor), InArg(ArgType.Tensor), ], "returns": [ Return(ArgType.Tensor), ], }, "zeros.default": { # (SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor "args": [ InArg(ArgType.Param, value=[2, 2]), InKwarg(ArgType.ScalarTypeOpt, "dtype"), ], "returns": [Return(ArgType.Tensor, fill=3)], }, }