# Copyright (C) 2021 Collabora, Ltd. # Copyright (C) 2016 Intel Corporation # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice (including the next # paragraph) shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import argparse import sys import math a = 'a' b = 'b' c = 'c' d = 'd' # In general, bcsel is cheaper than bitwise arithmetic on Mali. On # Bifrost, we can implement bcsel as either CSEL or MUX to schedule to either # execution unit. On Valhall, bitwise arithmetic may be on the SFU whereas MUX # is on the higher throughput CVT unit. We get a zero argument for free relative # to the bitwise op, which would be LSHIFT_* internally taking a zero anyway. # # As such, it's beneficial to reexpress bitwise arithmetic of booleans as bcsel. opt_bool_bitwise = [ (('iand', 'a@1', 'b@1'), ('bcsel', a, b, False)), (('ior', 'a@1', 'b@1'), ('bcsel', a, a, b)), (('iand', 'a@1', ('inot', 'b@1')), ('bcsel', b, 0, a)), (('ior', 'a@1', ('inot', 'b@1')), ('bcsel', b, a, True)), ] algebraic_late = [ (('pack_32_4x8_split', a, b, c, d), ('pack_32_2x16_split', ('ior', ('u2u16', a), ('ishl', ('u2u16', b), 8)), ('ior', ('u2u16', c), ('ishl', ('u2u16', d), 8)))), # Canonical form. The scheduler will convert back if it makes sense. (('fmul', a, 2.0), ('fadd', a, a)), # Fuse Mali-specific clamps (('fmin', ('fmax', a, -1.0), 1.0), ('fsat_signed', a)), (('fmax', ('fmin', a, 1.0), -1.0), ('fsat_signed', a)), (('fmax', a, 0.0), ('fclamp_pos', a)), (('b32csel', 'b@32', ('iadd', 'a@32', 1), a), ('iadd', a, ('b2i32', b))), # We don't have an 8-bit CSEL, so this is the best we can do. # Note that we use 8-bit booleans internally to preserve vectorization. (('imin', 'a@8', 'b@8'), ('b8csel', ('ilt8', a, b), a, b)), (('imax', 'a@8', 'b@8'), ('b8csel', ('ilt8', a, b), b, a)), (('umin', 'a@8', 'b@8'), ('b8csel', ('ult8', a, b), a, b)), (('umax', 'a@8', 'b@8'), ('b8csel', ('ult8', a, b), b, a)), # Floats are at minimum 16-bit, which means when converting to an 8-bit # integer, the vectorization changes. So there's no one-shot hardware # instruction for f2i8. Instead, lower to two NIR instructions that map # directly to the hardware. (('f2i8', a), ('i2i8', ('f2i16', a))), (('f2u8', a), ('u2u8', ('f2u16', a))), # XXX: Duplicate of nir_lower_pack (('unpack_64_2x32', a), ('vec2', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a))), ] # Handling all combinations of boolean and float sizes for b2f is nontrivial. # bcsel has the same problem in more generality; lower b2f to bcsel in NIR to # reuse the efficient implementations of bcsel. This includes special handling # to allow vectorization in places the hardware does not directly. # # Because this lowering must happen late, NIR won't squash inot in # automatically. Do so explicitly. (The more specific pattern must be first.) for bsz in [8, 16, 32]: for fsz in [16, 32]: algebraic_late += [ ((f'b2f{fsz}', ('inot', f'a@{bsz}')), (f'b{bsz}csel', a, 0.0, 1.0)), ((f'b2f{fsz}', f'a@{bsz}'), (f'b{bsz}csel', a, 1.0, 0.0)), ] def main(): parser = argparse.ArgumentParser() parser.add_argument('-p', '--import-path', required=True) args = parser.parse_args() sys.path.insert(0, args.import_path) run() def run(): import nir_algebraic # pylint: disable=import-error print('#include "bifrost_nir.h"') print(nir_algebraic.AlgebraicPass("bifrost_nir_opt_boolean_bitwise", opt_bool_bitwise).render()) print(nir_algebraic.AlgebraicPass("bifrost_nir_lower_algebraic_late", algebraic_late).render()) if __name__ == '__main__': main()