/* * Copyright © 2022 Konstantin Seurer * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #version 460 #extension GL_GOOGLE_include_directive : require #extension GL_EXT_shader_explicit_arithmetic_types_int8 : require #extension GL_EXT_shader_explicit_arithmetic_types_int16 : require #extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #extension GL_EXT_shader_explicit_arithmetic_types_int64 : require #extension GL_EXT_shader_explicit_arithmetic_types_float16 : require #extension GL_EXT_scalar_block_layout : require #extension GL_EXT_buffer_reference : require #extension GL_EXT_buffer_reference2 : require #extension GL_KHR_shader_subgroup_vote : require #extension GL_KHR_shader_subgroup_arithmetic : require #extension GL_KHR_shader_subgroup_ballot : require #include "vk_build_interface.h" layout(local_size_x_id = SUBGROUP_SIZE_ID, local_size_y = 1, local_size_z = 1) in; layout(push_constant) uniform CONSTS { leaf_args args; }; /* A GLSL-adapted copy of VkAccelerationStructureInstanceKHR. */ struct AccelerationStructureInstance { mat3x4 transform; uint32_t custom_instance_and_mask; uint32_t sbt_offset_and_flags; uint64_t accelerationStructureReference; }; TYPE(AccelerationStructureInstance, 8); bool build_triangle(inout vk_aabb bounds, VOID_REF dst_ptr, vk_bvh_geometry_data geom_data, uint32_t global_id) { bool is_valid = true; triangle_indices indices = load_indices(geom_data.indices, geom_data.index_format, global_id); triangle_vertices vertices = load_vertices(geom_data.data, indices, geom_data.vertex_format, geom_data.stride); /* An inactive triangle is one for which the first (X) component of any vertex is NaN. If any * other vertex component is NaN, and the first is not, the behavior is undefined. If the vertex * format does not have a NaN representation, then all triangles are considered active. */ if (isnan(vertices.vertex[0].x) || isnan(vertices.vertex[1].x) || isnan(vertices.vertex[2].x)) #if ALWAYS_ACTIVE is_valid = false; #else return false; #endif if (geom_data.transform != NULL) { mat4 transform = mat4(1.0); for (uint32_t col = 0; col < 4; col++) for (uint32_t row = 0; row < 3; row++) transform[col][row] = DEREF(INDEX(float, geom_data.transform, col + row * 4)); for (uint32_t i = 0; i < 3; i++) vertices.vertex[i] = transform * vertices.vertex[i]; } REF(vk_ir_triangle_node) node = REF(vk_ir_triangle_node)(dst_ptr); bounds.min = vec3(INFINITY); bounds.max = vec3(-INFINITY); for (uint32_t coord = 0; coord < 3; coord++) for (uint32_t comp = 0; comp < 3; comp++) { DEREF(node).coords[coord][comp] = vertices.vertex[coord][comp]; bounds.min[comp] = min(bounds.min[comp], vertices.vertex[coord][comp]); bounds.max[comp] = max(bounds.max[comp], vertices.vertex[coord][comp]); } DEREF(node).base.aabb = bounds; DEREF(node).triangle_id = global_id; DEREF(node).geometry_id_and_flags = geom_data.geometry_id; DEREF(node).id = 9; return is_valid; } bool build_aabb(inout vk_aabb bounds, VOID_REF src_ptr, VOID_REF dst_ptr, uint32_t geometry_id, uint32_t global_id) { bool is_valid = true; REF(vk_ir_aabb_node) node = REF(vk_ir_aabb_node)(dst_ptr); for (uint32_t vec = 0; vec < 2; vec++) for (uint32_t comp = 0; comp < 3; comp++) { float coord = DEREF(INDEX(float, src_ptr, comp + vec * 3)); if (vec == 0) bounds.min[comp] = coord; else bounds.max[comp] = coord; } /* An inactive AABB is one for which the minimum X coordinate is NaN. If any other component is * NaN, and the first is not, the behavior is undefined. */ if (isnan(bounds.min.x)) #if ALWAYS_ACTIVE is_valid = false; #else return false; #endif DEREF(node).base.aabb = bounds; DEREF(node).primitive_id = global_id; DEREF(node).geometry_id_and_flags = geometry_id; return is_valid; } vk_aabb calculate_instance_node_bounds(uint64_t base_ptr, mat3x4 otw_matrix) { vk_aabb aabb; vk_aabb blas_aabb = DEREF(REF(vk_aabb)(base_ptr + BVH_BOUNDS_OFFSET)); for (uint32_t comp = 0; comp < 3; ++comp) { aabb.min[comp] = otw_matrix[comp][3]; aabb.max[comp] = otw_matrix[comp][3]; for (uint32_t col = 0; col < 3; ++col) { aabb.min[comp] += min(otw_matrix[comp][col] * blas_aabb.min[col], otw_matrix[comp][col] * blas_aabb.max[col]); aabb.max[comp] += max(otw_matrix[comp][col] * blas_aabb.min[col], otw_matrix[comp][col] * blas_aabb.max[col]); } } return aabb; } bool build_instance(inout vk_aabb bounds, VOID_REF src_ptr, VOID_REF dst_ptr, uint32_t global_id) { REF(vk_ir_instance_node) node = REF(vk_ir_instance_node)(dst_ptr); AccelerationStructureInstance instance = DEREF(REF(AccelerationStructureInstance)(src_ptr)); /* An inactive instance is one whose acceleration structure handle is VK_NULL_HANDLE. Since the active terminology is * only relevant for BVH updates, which we do not implement, we can also skip instances with mask == 0. */ if (instance.accelerationStructureReference == 0 || instance.custom_instance_and_mask < (1u << 24u)) return false; DEREF(node).base_ptr = instance.accelerationStructureReference; mat4 transform = mat4(instance.transform); DEREF(node).otw_matrix = mat3x4(transform); bounds = calculate_instance_node_bounds(instance.accelerationStructureReference, mat3x4(transform)); DEREF(node).base.aabb = bounds; DEREF(node).custom_instance_and_mask = instance.custom_instance_and_mask; DEREF(node).sbt_offset_and_flags = instance.sbt_offset_and_flags; DEREF(node).instance_id = global_id; return true; } void main(void) { uint32_t global_id = gl_GlobalInvocationID.x; uint32_t primitive_id = args.geom_data.first_id + global_id; REF(key_id_pair) id_ptr = INDEX(key_id_pair, args.ids, primitive_id); uint32_t src_offset = global_id * args.geom_data.stride; uint32_t dst_stride; uint32_t node_type; if (args.geom_data.geometry_type == VK_GEOMETRY_TYPE_TRIANGLES_KHR) { dst_stride = SIZEOF(vk_ir_triangle_node); node_type = vk_ir_node_triangle; } else if (args.geom_data.geometry_type == VK_GEOMETRY_TYPE_AABBS_KHR) { dst_stride = SIZEOF(vk_ir_aabb_node); node_type = vk_ir_node_aabb; } else { dst_stride = SIZEOF(vk_ir_instance_node); node_type = vk_ir_node_instance; } uint32_t dst_offset = primitive_id * dst_stride; VOID_REF dst_ptr = OFFSET(args.bvh, dst_offset); vk_aabb bounds; bool is_active; if (args.geom_data.geometry_type == VK_GEOMETRY_TYPE_TRIANGLES_KHR) { is_active = build_triangle(bounds, dst_ptr, args.geom_data, global_id); } else if (args.geom_data.geometry_type == VK_GEOMETRY_TYPE_AABBS_KHR) { VOID_REF src_ptr = OFFSET(args.geom_data.data, src_offset); is_active = build_aabb(bounds, src_ptr, dst_ptr, args.geom_data.geometry_id, global_id); } else { VOID_REF src_ptr = OFFSET(args.geom_data.data, src_offset); /* arrayOfPointers */ if (args.geom_data.stride == 8) { src_ptr = DEREF(REF(VOID_REF)(src_ptr)); } is_active = build_instance(bounds, src_ptr, dst_ptr, global_id); } #if ALWAYS_ACTIVE if (!is_active && args.geom_data.geometry_type != VK_GEOMETRY_TYPE_INSTANCES_KHR) { bounds.min = vec3(0.0); bounds.max = vec3(0.0); is_active = true; } #endif DEREF(id_ptr).id = is_active ? pack_ir_node_id(dst_offset, node_type) : VK_BVH_INVALID_NODE; uvec4 ballot = subgroupBallot(is_active); if (subgroupElect()) atomicAdd(DEREF(args.header).active_leaf_count, subgroupBallotBitCount(ballot)); atomicMin(DEREF(args.header).min_bounds[0], to_emulated_float(bounds.min.x)); atomicMin(DEREF(args.header).min_bounds[1], to_emulated_float(bounds.min.y)); atomicMin(DEREF(args.header).min_bounds[2], to_emulated_float(bounds.min.z)); atomicMax(DEREF(args.header).max_bounds[0], to_emulated_float(bounds.max.x)); atomicMax(DEREF(args.header).max_bounds[1], to_emulated_float(bounds.max.y)); atomicMax(DEREF(args.header).max_bounds[2], to_emulated_float(bounds.max.z)); }