/* * Copyright (c) 2021, The OpenThread Authors. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * @file * This file includes definitions for a generic array. */ #ifndef ARRAY_HPP_ #define ARRAY_HPP_ #include "openthread-core-config.h" #include "common/code_utils.hpp" #include "common/const_cast.hpp" #include "common/error.hpp" #include "common/locator.hpp" #include "common/numeric_limits.hpp" #include "common/type_traits.hpp" namespace ot { /** * Returns the length of a given array (number of elements in the array). * * This template function is `constexpr`. The template arguments are expected to be deduced by the compiler allowing * callers to simply use `GetArrayLength(aArray)`. * * @tparam Type The array element type. * @tparam kArrayLength The array length. * * @returns The array length (number of elements in the array). */ template constexpr inline uint16_t GetArrayLength(const Type (&)[kArrayLength]) { return kArrayLength; } /** * Returns a pointer to end of a given array (pointing to the past-the-end element). * * Note that the past-the-end element is a theoretical element that would follow the last element in the array. It does * not point to an actual element in array, and thus should not be dereferenced. * * @tparam Type The array element type. * @tparam kArrayLength The array length. * * @param[in] aArray A reference to the array. * * @returns Pointer to the past-the-end element. */ template inline Type *GetArrayEnd(Type (&aArray)[kArrayLength]) { return &aArray[kArrayLength]; } /** * Returns a pointer to end of a given array (pointing to the past-the-end element). * * Note that the past-the-end element is a theoretical element that would follow the last element in the array. It does * not point to an actual element in array, and thus should not be dereferenced. * * @tparam Type The array element type. * @tparam kArrayLength The array length. * * @param[in] aArray A reference to the array. * * @returns Pointer to the past-the-end element. */ template inline const Type *GetArrayEnd(const Type (&aArray)[kArrayLength]) { return &aArray[kArrayLength]; } /** * Represents an array of elements with a fixed max size. * * @tparam Type The array element type. * @tparam kMaxSize Specifies the max array size (maximum number of elements in the array). * @tparam SizeType The type to be used for array size, length, and index. If not specified, a default `uint` type * is determined based on `kMaxSize`, i.e., if `kMaxSize <= 255` then `uint8_t` will be used, * otherwise `uint16_t` will be used. */ template ::kMax, uint8_t, uint16_t>::Type> class Array { static_assert(kMaxSize != 0, "Array `kMaxSize` cannot be zero"); public: /** * Represents the length or index in array. * * It is typically either `uint8_t` or `uint16_t` (determined based on the maximum array size (`kMaxSize`)). */ typedef SizeType IndexType; /** * Initializes the array as empty. */ Array(void) : mLength(0) { } /** * Initializes the array by copying elements from another array. * * The method uses assignment `=` operator on `Type` to copy each element from @p aOtherArray into the elements of * the array. * * @param[in] aOtherArray Another array to copy from. */ Array(const Array &aOtherArray) { *this = aOtherArray; } /** * Initializes the array as empty and initializes its elements by calling `Init(Instance &)` * method on every element. * * Uses method `Init(Instance &aInstance)` on `Type`. * * @param[in] aInstance The OpenThread instance. */ explicit Array(Instance &aInstance) : mLength(0) { for (Type &element : mElements) { element.Init(aInstance); } } /** * Clears the array. */ void Clear(void) { mLength = 0; } /** * Indicates whether or not the array is empty. * * @retval TRUE when array is empty. * @retval FALSE when array is not empty. */ bool IsEmpty(void) const { return (mLength == 0); } /** * Indicates whether or not the array is full. * * @retval TRUE when array is full. * @retval FALSE when array is not full. */ bool IsFull(void) const { return (mLength == GetMaxSize()); } /** * Returns the maximum array size (max number of elements). * * @returns The maximum array size (max number of elements that can be added to the array). */ IndexType GetMaxSize(void) const { return static_cast(kMaxSize); } /** * Returns the current length of array (number of elements). * * @returns The current array length. */ IndexType GetLength(void) const { return mLength; } /** * Sets the current length (number of elements) of the array. * * @param[in] aLength The array length. */ void SetLength(IndexType aLength) { mLength = aLength; } /** * Returns the pointer to the start of underlying C array buffer serving as `Array` storage. * * @return The pointer to start of underlying C array buffer. */ Type *GetArrayBuffer(void) { return mElements; } /** * Returns the pointer to the start of underlying C array buffer serving as `Array` storage. * * @return The pointer to start of underlying C array buffer. */ const Type *GetArrayBuffer(void) const { return mElements; } /** * Overloads the `[]` operator to get the element at a given index. * * Does not perform index bounds checking. Behavior is undefined if @p aIndex is not valid. * * @param[in] aIndex The index to get. * * @returns A reference to the element in array at @p aIndex. */ Type &operator[](IndexType aIndex) { return mElements[aIndex]; } /** * Overloads the `[]` operator to get the element at a given index. * * Does not perform index bounds checking. Behavior is undefined if @p aIndex is not valid. * * @param[in] aIndex The index to get. * * @returns A reference to the element in array at @p aIndex. */ const Type &operator[](IndexType aIndex) const { return mElements[aIndex]; } /** * Gets a pointer to the element at a given index. * * Unlike `operator[]`, this method checks @p aIndex to be valid and within the current length. * * @param[in] aIndex The index to get. * * @returns A pointer to element in array at @p aIndex or `nullptr` if @p aIndex is not valid. */ Type *At(IndexType aIndex) { return (aIndex < mLength) ? &mElements[aIndex] : nullptr; } /** * Gets a pointer to the element at a given index. * * Unlike `operator[]`, this method checks @p aIndex to be valid and within the current length. * * @param[in] aIndex The index to get. * * @returns A pointer to element in array at @p aIndex or `nullptr` if @p aIndex is not valid. */ const Type *At(IndexType aIndex) const { return (aIndex < mLength) ? &mElements[aIndex] : nullptr; } /** * Gets a pointer to the element at the front of the array (first element). * * @returns A pointer to the front element or `nullptr` if array is empty. */ Type *Front(void) { return At(0); } /** * Gets a pointer to the element at the front of the array (first element). * * @returns A pointer to the front element or `nullptr` if array is empty. */ const Type *Front(void) const { return At(0); } /** * Gets a pointer to the element at the back of the array (last element). * * @returns A pointer to the back element or `nullptr` if array is empty. */ Type *Back(void) { return At(mLength - 1); } /** * Gets a pointer to the element at the back of the array (last element). * * @returns A pointer to the back element or `nullptr` if array is empty. */ const Type *Back(void) const { return At(mLength - 1); } /** * Appends a new entry to the end of the array. * * The method uses assignment `=` operator on `Type` to copy @p aEntry into the added array element. * * @param[in] aEntry The new entry to push back. * * @retval kErrorNone Successfully pushed back @p aEntry to the end of the array. * @retval kErrorNoBufs Could not append the new element since array is full. */ Error PushBack(const Type &aEntry) { return IsFull() ? kErrorNoBufs : (mElements[mLength++] = aEntry, kErrorNone); } /** * Appends a new entry to the end of the array. * * On success, this method returns a pointer to the newly appended element in the array for the caller to * initialize and use. * * @return A pointer to the newly appended element or `nullptr` if array is full. */ Type *PushBack(void) { return IsFull() ? nullptr : &mElements[mLength++]; } /** * Removes the last element in the array. * * @returns A pointer to the removed element from the array, or `nullptr` if array is empty. */ Type *PopBack(void) { return IsEmpty() ? nullptr : &mElements[--mLength]; } /** * Returns the index of an element in the array. * * The @p aElement MUST be from the array, otherwise the behavior of this method is undefined. * * @param[in] aElement A reference to an element in the array. * * @returns The index of @p aElement in the array. */ IndexType IndexOf(const Type &aElement) const { return static_cast(&aElement - &mElements[0]); } /** * Removes an element from the array. * * The @p aElement MUST be from the array, otherwise the behavior of this method is undefined. * * To remove @p aElement, it is replaced by the last element in array, so the order of items in the array can * change after a call to this method. * * The method uses assignment `=` operator on `Type` to copy the last element in place of @p aElement. */ void Remove(Type &aElement) { Type *lastElement = PopBack(); if (lastElement != &aElement) { aElement = *lastElement; } } /** * Finds the first match of a given entry in the array. * * Uses `==` operator on `Type` to compare the array element with @p aEntry. * * @param[in] aEntry The entry to search for within the array. * * @returns A pointer to matched array element, or `nullptr` if a match could not be found. */ Type *Find(const Type &aEntry) { return AsNonConst(AsConst(this)->Find(aEntry)); } /** * Finds the first match of a given entry in the array. * * Uses `==` operator to compare the array elements with @p aEntry. * * @param[in] aEntry The entry to search for within the array. * * @returns A pointer to matched array element, or `nullptr` if a match could not be found. */ const Type *Find(const Type &aEntry) const { const Type *matched = nullptr; for (const Type &element : *this) { if (element == aEntry) { matched = &element; break; } } return matched; } /** * Indicates whether or not a match to given entry exists in the array. * * Uses `==` operator on `Type` to compare the array elements with @p aEntry. * * @param[in] aEntry The entry to search for within the array. * * @retval TRUE The array contains a matching element with @p aEntry. * @retval FALSE The array does not contain a matching element with @p aEntry. */ bool Contains(const Type &aEntry) const { return Find(aEntry) != nullptr; } /** * Finds the first element in the array matching a given indicator. * * The template type `Indicator` specifies the type of @p aIndicator object which is used to match against elements * in the array. To check that an element matches the given indicator, the `Matches()` method is invoked on each * `Type` element in the array. The `Matches()` method should be provided by `Type` class accordingly: * * bool Type::Matches(const Indicator &aIndicator) const * * @param[in] aIndicator An indicator to match with elements in the array. * * @returns A pointer to the matched array element, or `nullptr` if a match could not be found. */ template Type *FindMatching(const Indicator &aIndicator) { return AsNonConst(AsConst(this)->FindMatching(aIndicator)); } /** * Finds the first element in the array matching a given indicator. * * The template type `Indicator` specifies the type of @p aIndicator object which is used to match against elements * in the array. To check that an element matches the given indicator, the `Matches()` method is invoked on each * `Type` element in the array. The `Matches()` method should be provided by `Type` class accordingly: * * bool Type::Matches(const Indicator &aIndicator) const * * @param[in] aIndicator An indicator to match with elements in the array. * * @returns A pointer to the matched array element, or `nullptr` if a match could not be found. */ template const Type *FindMatching(const Indicator &aIndicator) const { const Type *matched = nullptr; for (const Type &element : *this) { if (element.Matches(aIndicator)) { matched = &element; break; } } return matched; } /** * Indicates whether or not the array contains an element matching a given indicator. * * The template type `Indicator` specifies the type of @p aIndicator object which is used to match against elements * in the array. To check that an element matches the given indicator, the `Matches()` method is invoked on each * `Type` element in the array. The `Matches()` method should be provided by `Type` class accordingly: * * bool Type::Matches(const Indicator &aIndicator) const * * @param[in] aIndicator An indicator to match with elements in the array. * * @retval TRUE The array contains a matching element with @p aIndicator. * @retval FALSE The array does not contain a matching element with @p aIndicator. */ template bool ContainsMatching(const Indicator &aIndicator) const { return FindMatching(aIndicator) != nullptr; } /** * Removes the first element in the array matching a given indicator. * * Behaves similar to `Remove()`, i.e., the matched element (if found) is replaced with the last element * in the array (using `=` operator on `Type`). So the order of items in the array can change after a call to this * method. * * The template type `Indicator` specifies the type of @p aIndicator object which is used to match against elements * in the array. To check that an element matches the given indicator, the `Matches()` method is invoked on each * `Type` element in the array. The `Matches()` method should be provided by `Type` class accordingly: * * bool Type::Matches(const Indicator &aIndicator) const * * @param[in] aIndicator An indicator to match with elements in the array. */ template void RemoveMatching(const Indicator &aIndicator) { Type *entry = FindMatching(aIndicator); if (entry != nullptr) { Remove(*entry); } } /** * Removes all elements in the array matching a given indicator. * * Behaves similar to `Remove()`, i.e., a matched element is replaced with the last element in the * array (using `=` operator on `Type`). So the order of items in the array can change after a call to this method. * * The template type `Indicator` specifies the type of @p aIndicator object which is used to match against elements * in the array. To check that an element matches the given indicator, the `Matches()` method is invoked on each * `Type` element in the array. The `Matches()` method should be provided by `Type` class accordingly: * * bool Type::Matches(const Indicator &aIndicator) const * * @param[in] aIndicator An indicator to match with elements in the array. */ template void RemoveAllMatching(const Indicator &aIndicator) { for (IndexType index = 0; index < GetLength();) { Type &entry = mElements[index]; if (entry.Matches(aIndicator)) { Remove(entry); // When the entry is removed from the array it is // replaced with the last element. In this case, we do // not increment `index`. } else { index++; } } } /** * Overloads assignment `=` operator to copy elements from another array into the array. * * The method uses assignment `=` operator on `Type` to copy each element from @p aOtherArray into the elements of * the array. * * @param[in] aOtherArray Another array to copy from. */ Array &operator=(const Array &aOtherArray) { Clear(); for (const Type &otherElement : aOtherArray) { IgnoreError(PushBack(otherElement)); } return *this; } /** * Indicates whether a given entry pointer is from the array buffer. * * Does not check the current length of array and only checks that @p aEntry is pointing to an address * contained within underlying C array buffer. * * @param[in] aEntry A pointer to an entry to check. * * @retval TRUE The @p aEntry is from the array. * @retval FALSE The @p aEntry is not from the array. */ bool IsInArrayBuffer(const Type *aEntry) const { return (&mElements[0] <= aEntry) && (aEntry < GetArrayEnd(mElements)); } // The following methods are intended to support range-based `for` // loop iteration over the array elements and should not be used // directly. Type *begin(void) { return &mElements[0]; } Type *end(void) { return &mElements[mLength]; } const Type *begin(void) const { return &mElements[0]; } const Type *end(void) const { return &mElements[mLength]; } private: Type mElements[kMaxSize]; IndexType mLength; }; } // namespace ot #endif // ARRAY_HPP_