#!/usr/bin/env python3 # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import unittest import config import thread_cert from pktverify.consts import MLE_CHILD_ID_REQUEST, MLE_CHILD_ID_RESPONSE, REALM_LOCAL_ALL_NODES_ADDRESS, REALM_LOCAL_ALL_ROUTERS_ADDRESS, REALM_LOCAL_All_THREAD_NODES_MULTICAST_ADDRESS from pktverify.packet_verifier import PacketVerifier LEADER = 1 ROUTER1 = 2 DUT_ROUTER2 = 3 SED1 = 4 FRAGMENTED_DATA_LEN = 256 # Test Purpose and Description: # ----------------------------- # The purpose of this test case is to validate the Realm-Local addresses # that the DUT auto-configures. # # Test Topology: # ------------- # Leader # | # Router_1 - Router_2(DUT) # | # SED # # DUT Types: # ---------- # Router class Cert_5_3_2_RealmLocal(thread_cert.TestCase): USE_MESSAGE_FACTORY = False TOPOLOGY = { LEADER: { 'name': 'LEADER', 'mode': 'rdn', 'allowlist': [ROUTER1] }, ROUTER1: { 'name': 'ROUTER_1', 'mode': 'rdn', 'allowlist': [LEADER, DUT_ROUTER2] }, DUT_ROUTER2: { 'name': 'ROUTER_2', 'mode': 'rdn', 'allowlist': [ROUTER1, SED1] }, SED1: { 'name': 'SED', 'is_mtd': True, 'mode': 'n', 'timeout': config.DEFAULT_CHILD_TIMEOUT, 'allowlist': [DUT_ROUTER2] }, } def test(self): # 1 self.nodes[LEADER].start() self.simulator.go(config.LEADER_STARTUP_DELAY) self.assertEqual(self.nodes[LEADER].get_state(), 'leader') self.nodes[ROUTER1].start() self.simulator.go(config.ROUTER_STARTUP_DELAY) self.assertEqual(self.nodes[ROUTER1].get_state(), 'router') self.nodes[DUT_ROUTER2].start() self.simulator.go(config.ROUTER_STARTUP_DELAY) self.assertEqual(self.nodes[DUT_ROUTER2].get_state(), 'router') self.nodes[SED1].start() self.simulator.go(5) self.assertEqual(self.nodes[SED1].get_state(), 'child') self.collect_ipaddrs() self.collect_rloc16s() # 2 & 3 mleid = self.nodes[DUT_ROUTER2].get_ip6_address(config.ADDRESS_TYPE.ML_EID) self.assertTrue(self.nodes[LEADER].ping(mleid, size=FRAGMENTED_DATA_LEN)) self.simulator.go(2) self.assertTrue(self.nodes[LEADER].ping(mleid)) self.simulator.go(2) # 4 & 5 self.assertTrue(self.nodes[LEADER].ping('ff03::1', num_responses=2, size=FRAGMENTED_DATA_LEN)) self.simulator.go(5) self.assertTrue(self.nodes[LEADER].ping('ff03::1', num_responses=2)) self.simulator.go(5) # 6 & 7 self.assertTrue(self.nodes[LEADER].ping('ff03::2', num_responses=2, size=FRAGMENTED_DATA_LEN)) self.simulator.go(5) self.assertTrue(self.nodes[LEADER].ping('ff03::2', num_responses=2)) self.simulator.go(5) # 8 self.assertTrue(self.nodes[LEADER].ping( config.REALM_LOCAL_All_THREAD_NODES_MULTICAST_ADDRESS, num_responses=3, size=FRAGMENTED_DATA_LEN, )) self.simulator.go(5) def verify(self, pv): pkts = pv.pkts pv.summary.show() LEADER = pv.vars['LEADER'] LEADER_MLEID = pv.vars['LEADER_MLEID'] ROUTER_1 = pv.vars['ROUTER_1'] ROUTER_2 = pv.vars['ROUTER_2'] ROUTER_2_RLOC16 = pv.vars['ROUTER_2_RLOC16'] ROUTER_2_MLEID = pv.vars['ROUTER_2_MLEID'] SED = pv.vars['SED'] SED_RLOC16 = pv.vars['SED_RLOC16'] # Step 1: Build the topology as described pv.verify_attached('ROUTER_1', 'LEADER') pv.verify_attached('ROUTER_2', 'ROUTER_1') pv.verify_attached('SED', 'ROUTER_2', 'MTD') # Step 2: Leader sends a Fragmented ICMPv6 Echo Request to # DUT's ML-EID # The DUT MUST respond with an ICMPv6 Echo Reply _pkt = pkts.filter_ping_request().\ filter_ipv6_src_dst(LEADER_MLEID, ROUTER_2_MLEID).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() # Step 3: Leader sends a Unfragmented ICMPv6 Echo Request to # DUT’s ML-EID # The DUT MUST respond with an ICMPv6 Echo Reply _pkt = pkts.filter_ping_request().\ filter_ipv6_src_dst(LEADER_MLEID, ROUTER_2_MLEID).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\ must_next() # Step 4: Leader sends a Fragmented ICMPv6 Echo Request to the # Realm-Local All Nodes multicast address (FF03::1) # The DUT MUST respond with an ICMPv6 Echo Reply # The DUT MUST NOT forward the ICMPv6 Echo Request to SED _pkt1 = pkts.filter_ping_request().\ filter_wpan_src64(LEADER).\ filter_ipv6_dst(REALM_LOCAL_ALL_NODES_ADDRESS).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() with pkts.save_index(): pkts.filter_ping_reply(identifier=_pkt1.icmpv6.echo.identifier).\ filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() pkts.filter_ping_request(identifier=_pkt1.icmpv6.echo.identifier).\ filter_wpan_src16_dst16(ROUTER_2_RLOC16, SED_RLOC16).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_not_next() # Step 5: Leader sends an Unfragmented ICMPv6 Echo Request to the # Realm-Local All Nodes multicast address (FF03::1) # The DUT MUST respond with an ICMPv6 Echo Reply # The DUT MUST NOT forward the ICMPv6 Echo Request to SED _pkt2 = pkts.filter_ping_request().\ filter_wpan_src64(LEADER).\ filter_ipv6_dst(REALM_LOCAL_ALL_NODES_ADDRESS).\ filter(lambda p: p.icmpv6.echo.sequence_number != _pkt1.icmpv6.echo.sequence_number ).\ must_next() with pkts.save_index(): pkts.filter_ping_reply(identifier=_pkt2.icmpv6.echo.identifier).\ filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\ must_next() pkts.filter_ping_request(identifier = _pkt2.icmpv6.echo.identifier).\ filter_wpan_src16_dst16(ROUTER_2_RLOC16, SED_RLOC16).\ must_not_next() # Step 6: Leader sends a Fragmented ICMPv6 Echo Request to the # Realm-Local All Routers multicast address (FF03::2) # The DUT MUST respond with an ICMPv6 Echo Reply # The DUT MUST NOT forward the ICMPv6 Echo Request to SED _pkt1 = pkts.filter_ping_request().\ filter_wpan_src64(LEADER).\ filter_ipv6_dst(REALM_LOCAL_ALL_ROUTERS_ADDRESS).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() with pkts.save_index(): pkts.filter_ping_reply(identifier=_pkt1.icmpv6.echo.identifier).\ filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() pkts.filter_ping_request(identifier=_pkt1.icmpv6.echo.identifier).\ filter_wpan_src16_dst16(ROUTER_2_RLOC16, SED_RLOC16).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_not_next() # Step 7: Leader sends an Unfragmented ICMPv6 Echo Request to the # Realm-Local All Routers multicast address (FF03::2) # The DUT MUST respond with an ICMPv6 Echo Reply # The DUT MUST NOT forward the ICMPv6 Echo Request to SED _pkt2 = pkts.filter_ping_request().\ filter_wpan_src64(LEADER).\ filter_ipv6_dst(REALM_LOCAL_ALL_ROUTERS_ADDRESS).\ filter(lambda p: p.icmpv6.echo.sequence_number != _pkt1.icmpv6.echo.sequence_number ).\ must_next() with pkts.save_index(): pkts.filter_ping_reply(identifier=_pkt2.icmpv6.echo.identifier).\ filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\ must_next() pkts.filter_ping_request(identifier=_pkt2.icmpv6.echo.identifier).\ filter_wpan_src16_dst16(ROUTER_2_RLOC16, SED_RLOC16).\ must_not_next() # Step 8: Leader sends a Fragmented ICMPv6 Echo Request to the # Realm-Local All Thread Nodes multicast address # The DUT MUST respond with an ICMPv6 Echo Reply # The Realm-Local All Thread Nodes multicast address # MUST be a realm-local Unicast Prefix-Based Multicast # Address [RFC 3306], with: # - flgs set to 3 (P = 1 and T = 1) # - scop set to 3 # - plen set to the Mesh Local Prefix length # - network prefix set to the Mesh Local Prefix # - group ID set to 1 # The DUT MUST use IEEE 802.15.4 indirect transmissions # to forward packet to SED _pkt = pkts.filter_ping_request().\ filter_wpan_src64(LEADER).\ filter_ipv6_dst(REALM_LOCAL_All_THREAD_NODES_MULTICAST_ADDRESS).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() with pkts.save_index(): pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_ipv6_src_dst(ROUTER_2_MLEID, LEADER_MLEID).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() pkts.filter_ping_request(identifier = _pkt.icmpv6.echo.identifier).\ filter_wpan_src16_dst16(ROUTER_2_RLOC16, SED_RLOC16).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() pkts.filter_ping_reply(identifier=_pkt.icmpv6.echo.identifier).\ filter_wpan_src64(SED).\ filter_ipv6_dst(LEADER_MLEID).\ filter(lambda p: p.icmpv6.data.len == FRAGMENTED_DATA_LEN).\ must_next() if __name__ == '__main__': unittest.main()