import operator_benchmark as op_bench import torch import torch.nn.functional as F """Microbenchmarks for groupnorm operator.""" groupnorm_configs_short = op_bench.cross_product_configs( dims=( (32, 8, 16), (32, 8, 56, 56), ), num_groups=(2, 4), tags=["short"], ) class GroupNormBenchmark(op_bench.TorchBenchmarkBase): def init(self, dims, num_groups): num_channels = dims[1] self.inputs = { "input": (torch.rand(*dims) - 0.5) * 256, "num_groups": num_groups, "weight": torch.rand(num_channels, dtype=torch.float), "bias": torch.rand(num_channels, dtype=torch.float), "eps": 1e-5, } def forward(self, input, num_groups: int, weight, bias, eps: float): return F.group_norm(input, num_groups, weight=weight, bias=bias, eps=eps) op_bench.generate_pt_test(groupnorm_configs_short, GroupNormBenchmark) if __name__ == "__main__": op_bench.benchmark_runner.main()