import operator_benchmark as op_bench import torch import torch.nn.functional as F """Microbenchmarks for layernorm operator.""" layernorm_configs_short = op_bench.cross_product_configs( dims=( (1, 8, 16), (8, 8, 16), (32, 8, 16), (64, 128, 56, 56), ), tags=["short"], ) class LayerNormBenchmark(op_bench.TorchBenchmarkBase): def init(self, dims): input = (torch.rand(*dims) - 0.5) * 256 self.inputs = { "input": input, "weight": torch.rand(*input.size()[1:], dtype=torch.float), "bias": torch.rand(*input.size()[1:], dtype=torch.float), "eps": 1e-5, } def forward(self, input, weight, bias, eps: float): return F.layer_norm(input, input.size()[1:], weight=weight, bias=bias, eps=eps) op_bench.generate_pt_test(layernorm_configs_short, LayerNormBenchmark) if __name__ == "__main__": op_bench.benchmark_runner.main()