import operator_benchmark as op_bench import torch """Microbenchmarks for MatMul operator""" # Configs for PT Matmul operator mm_short_configs = op_bench.config_list( attr_names=["M", "N", "K", "trans_a", "trans_b"], attrs=[ [1, 1, 1, True, False], [128, 128, 128, True, False], [256, 256, 256, False, True], ], cross_product_configs={ "device": ["cpu", "cuda"], }, tags=["short"], ) mm_long_configs = op_bench.cross_product_configs( M=[32], N=[512, 128], K=[64], trans_a=[False, True], trans_b=[True, False], device=["cpu", "cuda"], tags=["long"], ) class MatMulBenchmark(op_bench.TorchBenchmarkBase): def init(self, M, N, K, trans_a, trans_b, device): self.inputs = { "input_one": torch.rand(M, N, device=device) if trans_a else torch.rand(N, M, device=device).t(), "input_two": torch.rand(N, K, device=device) if trans_b else torch.rand(K, N, device=device).t(), } self.set_module_name("matmul") def forward(self, input_one, input_two): return torch.matmul(input_one, input_two) op_bench.generate_pt_test(mm_long_configs + mm_short_configs, MatMulBenchmark) if __name__ == "__main__": op_bench.benchmark_runner.main()