import numpy from pt import configs import operator_benchmark as op_bench import torch import torch.ao.nn.quantized as nnq """ Microbenchmarks for qEmbeddingBag operators. """ class QEmbeddingBagBenchmark(op_bench.TorchBenchmarkBase): def init( self, embeddingbags, dim, mode, input_size, offset, sparse, include_last_offset, device, ): self.embedding = nnq.EmbeddingBag( num_embeddings=embeddingbags, embedding_dim=dim, mode=mode, include_last_offset=include_last_offset, ).to(device=device) numpy.random.seed((1 << 32) - 1) self.input = torch.tensor( numpy.random.randint(0, embeddingbags, input_size), device=device ).long() offset = torch.LongTensor([offset], device=device) self.offset = torch.cat( (offset, torch.tensor([self.input.size(0)], dtype=torch.long)), 0 ) self.inputs = {"input": self.input, "offset": self.offset} self.set_module_name("qEmbeddingBag") def forward(self, input, offset): return self.embedding(input, offset) op_bench.generate_pt_test(configs.embeddingbag_short_configs, QEmbeddingBagBenchmark) if __name__ == "__main__": op_bench.benchmark_runner.main()