#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Runs CIFAR10 training with differential privacy. """ import argparse import logging import shutil import sys from datetime import datetime, timedelta import numpy as np import torchvision.transforms as transforms from opacus import PrivacyEngine from torchvision import models from torchvision.datasets import CIFAR10 from tqdm import tqdm import torch import torch.nn as nn import torch.optim as optim import torch.utils.data logging.basicConfig( format="%(asctime)s:%(levelname)s:%(message)s", datefmt="%m/%d/%Y %H:%M:%S", stream=sys.stdout, ) logger = logging.getLogger("ddp") logger.setLevel(level=logging.INFO) def save_checkpoint(state, is_best, filename="checkpoint.tar"): torch.save(state, filename) if is_best: shutil.copyfile(filename, "model_best.pth.tar") def accuracy(preds, labels): return (preds == labels).mean() def train(args, model, train_loader, optimizer, privacy_engine, epoch, device): start_time = datetime.now() model.train() criterion = nn.CrossEntropyLoss() losses = [] top1_acc = [] for i, (images, target) in enumerate(tqdm(train_loader)): images = images.to(device) target = target.to(device) # compute output output = model(images) loss = criterion(output, target) preds = np.argmax(output.detach().cpu().numpy(), axis=1) labels = target.detach().cpu().numpy() # measure accuracy and record loss acc1 = accuracy(preds, labels) losses.append(loss.item()) top1_acc.append(acc1) # compute gradient and do SGD step loss.backward() # make sure we take a step after processing the last mini-batch in the # epoch to ensure we start the next epoch with a clean state optimizer.step() optimizer.zero_grad() if i % args.print_freq == 0: if not args.disable_dp: epsilon, best_alpha = privacy_engine.accountant.get_privacy_spent( delta=args.delta, alphas=[1 + x / 10.0 for x in range(1, 100)] + list(range(12, 64)), ) print( f"\tTrain Epoch: {epoch} \t" f"Loss: {np.mean(losses):.6f} " f"Acc@1: {np.mean(top1_acc):.6f} " f"(ε = {epsilon:.2f}, δ = {args.delta}) for α = {best_alpha}" ) else: print( f"\tTrain Epoch: {epoch} \t" f"Loss: {np.mean(losses):.6f} " f"Acc@1: {np.mean(top1_acc):.6f} " ) train_duration = datetime.now() - start_time return train_duration def test(args, model, test_loader, device): model.eval() criterion = nn.CrossEntropyLoss() losses = [] top1_acc = [] with torch.no_grad(): for images, target in tqdm(test_loader): images = images.to(device) target = target.to(device) output = model(images) loss = criterion(output, target) preds = np.argmax(output.detach().cpu().numpy(), axis=1) labels = target.detach().cpu().numpy() acc1 = accuracy(preds, labels) losses.append(loss.item()) top1_acc.append(acc1) top1_avg = np.mean(top1_acc) print(f"\tTest set:" f"Loss: {np.mean(losses):.6f} " f"Acc@1: {top1_avg :.6f} ") return np.mean(top1_acc) # flake8: noqa: C901 def main(): args = parse_args() if args.debug >= 1: logger.setLevel(level=logging.DEBUG) device = args.device if args.secure_rng: try: import torchcsprng as prng except ImportError as e: msg = ( "To use secure RNG, you must install the torchcsprng package! " "Check out the instructions here: https://github.com/pytorch/csprng#installation" ) raise ImportError(msg) from e generator = prng.create_random_device_generator("/dev/urandom") else: generator = None augmentations = [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), ] normalize = [ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ] train_transform = transforms.Compose( augmentations + normalize if args.disable_dp else normalize ) test_transform = transforms.Compose(normalize) train_dataset = CIFAR10( root=args.data_root, train=True, download=True, transform=train_transform ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=int(args.sample_rate * len(train_dataset)), generator=generator, num_workers=args.workers, pin_memory=True, ) test_dataset = CIFAR10( root=args.data_root, train=False, download=True, transform=test_transform ) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=args.batch_size_test, shuffle=False, num_workers=args.workers, ) best_acc1 = 0 model = models.__dict__[args.architecture]( pretrained=False, norm_layer=(lambda c: nn.GroupNorm(args.gn_groups, c)) ) model = model.to(device) if args.optim == "SGD": optimizer = optim.SGD( model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, ) elif args.optim == "RMSprop": optimizer = optim.RMSprop(model.parameters(), lr=args.lr) elif args.optim == "Adam": optimizer = optim.Adam(model.parameters(), lr=args.lr) else: raise NotImplementedError("Optimizer not recognized. Please check spelling") privacy_engine = None if not args.disable_dp: if args.clip_per_layer: # Each layer has the same clipping threshold. The total grad norm is still bounded by `args.max_per_sample_grad_norm`. n_layers = len( [(n, p) for n, p in model.named_parameters() if p.requires_grad] ) max_grad_norm = [ args.max_per_sample_grad_norm / np.sqrt(n_layers) ] * n_layers else: max_grad_norm = args.max_per_sample_grad_norm privacy_engine = PrivacyEngine( secure_mode=args.secure_rng, ) clipping = "per_layer" if args.clip_per_layer else "flat" model, optimizer, train_loader = privacy_engine.make_private( module=model, optimizer=optimizer, data_loader=train_loader, noise_multiplier=args.sigma, max_grad_norm=max_grad_norm, clipping=clipping, ) # Store some logs accuracy_per_epoch = [] time_per_epoch = [] for epoch in range(args.start_epoch, args.epochs + 1): if args.lr_schedule == "cos": lr = args.lr * 0.5 * (1 + np.cos(np.pi * epoch / (args.epochs + 1))) for param_group in optimizer.param_groups: param_group["lr"] = lr train_duration = train( args, model, train_loader, optimizer, privacy_engine, epoch, device ) top1_acc = test(args, model, test_loader, device) # remember best acc@1 and save checkpoint is_best = top1_acc > best_acc1 best_acc1 = max(top1_acc, best_acc1) time_per_epoch.append(train_duration) accuracy_per_epoch.append(float(top1_acc)) save_checkpoint( { "epoch": epoch + 1, "arch": "Convnet", "state_dict": model.state_dict(), "best_acc1": best_acc1, "optimizer": optimizer.state_dict(), }, is_best, filename=args.checkpoint_file + ".tar", ) time_per_epoch_seconds = [t.total_seconds() for t in time_per_epoch] avg_time_per_epoch = sum(time_per_epoch_seconds) / len(time_per_epoch_seconds) metrics = { "accuracy": best_acc1, "accuracy_per_epoch": accuracy_per_epoch, "avg_time_per_epoch_str": str(timedelta(seconds=int(avg_time_per_epoch))), "time_per_epoch": time_per_epoch_seconds, } logger.info( "\nNote:\n- 'total_time' includes the data loading time, training time and testing time.\n- 'time_per_epoch' measures the training time only.\n" ) logger.info(metrics) def parse_args(): parser = argparse.ArgumentParser(description="PyTorch CIFAR10 DP Training") parser.add_argument( "-j", "--workers", default=2, type=int, metavar="N", help="number of data loading workers (default: 2)", ) parser.add_argument( "--epochs", default=90, type=int, metavar="N", help="number of total epochs to run", ) parser.add_argument( "--start-epoch", default=1, type=int, metavar="N", help="manual epoch number (useful on restarts)", ) parser.add_argument( "-b", "--batch-size-test", default=256, type=int, metavar="N", help="mini-batch size for test dataset (default: 256)", ) parser.add_argument( "--sample-rate", default=0.005, type=float, metavar="SR", help="sample rate used for batch construction (default: 0.005)", ) parser.add_argument( "--lr", "--learning-rate", default=0.1, type=float, metavar="LR", help="initial learning rate", dest="lr", ) parser.add_argument( "--momentum", default=0.9, type=float, metavar="M", help="SGD momentum" ) parser.add_argument( "--wd", "--weight-decay", default=0, type=float, metavar="W", help="SGD weight decay", dest="weight_decay", ) parser.add_argument( "-p", "--print-freq", default=10, type=int, metavar="N", help="print frequency (default: 10)", ) parser.add_argument( "--resume", default="", type=str, metavar="PATH", help="path to latest checkpoint (default: none)", ) parser.add_argument( "-e", "--evaluate", dest="evaluate", action="store_true", help="evaluate model on validation set", ) parser.add_argument( "--seed", default=None, type=int, help="seed for initializing training. " ) parser.add_argument( "--sigma", type=float, default=1.5, metavar="S", help="Noise multiplier (default 1.0)", ) parser.add_argument( "-c", "--max-per-sample-grad_norm", type=float, default=10.0, metavar="C", help="Clip per-sample gradients to this norm (default 1.0)", ) parser.add_argument( "--disable-dp", action="store_true", default=False, help="Disable privacy training and just train with vanilla SGD", ) parser.add_argument( "--secure-rng", action="store_true", default=False, help="Enable Secure RNG to have trustworthy privacy guarantees." "Comes at a performance cost. Opacus will emit a warning if secure rng is off," "indicating that for production use it's recommender to turn it on.", ) parser.add_argument( "--delta", type=float, default=1e-5, metavar="D", help="Target delta (default: 1e-5)", ) parser.add_argument( "--checkpoint-file", type=str, default="checkpoint", help="path to save check points", ) parser.add_argument( "--data-root", type=str, default="../cifar10", help="Where CIFAR10 is/will be stored", ) parser.add_argument( "--log-dir", type=str, default="/tmp/stat/tensorboard", help="Where Tensorboard log will be stored", ) parser.add_argument( "--optim", type=str, default="SGD", help="Optimizer to use (Adam, RMSprop, SGD)", ) parser.add_argument( "--lr-schedule", type=str, choices=["constant", "cos"], default="cos" ) parser.add_argument( "--device", type=str, default="cuda", help="Device on which to run the code." ) parser.add_argument( "--architecture", type=str, default="resnet18", help="model from torchvision to run", ) parser.add_argument( "--gn-groups", type=int, default=8, help="Number of groups in GroupNorm", ) parser.add_argument( "--clip-per-layer", "--clip_per_layer", action="store_true", default=False, help="Use static per-layer clipping with the same clipping threshold for each layer. Necessary for DDP. If `False` (default), uses flat clipping.", ) parser.add_argument( "--debug", type=int, default=0, help="debug level (default: 0)", ) return parser.parse_args() if __name__ == "__main__": main()