import torch from torch._export import aot_compile from torch.export import Dim torch.manual_seed(1337) class Net(torch.nn.Module): def __init__(self, device): super().__init__() self.w_pre = torch.randn(4, 4, device=device) self.w_add = torch.randn(4, 4, device=device) def forward(self, x): w_transpose = torch.transpose(self.w_pre, 0, 1) w_relu = torch.nn.functional.relu(w_transpose) w = w_relu + self.w_add return torch.matmul(x, w) class NetWithTensorConstants(torch.nn.Module): def __init__(self) -> None: super().__init__() self.w = torch.randn(30, 1, device="cuda") def forward(self, x, y): z = self.w * x * y return z[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17]] data = {} data_with_tensor_constants = {} # Basice AOTI model test generation. def generate_basic_tests(): for device in ["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"]: for use_runtime_constant_folding in [True, False]: if device == "cpu" and use_runtime_constant_folding: # We do not test runtime const folding for cpu mode. continue model = Net(device).to(device=device) x = torch.randn((4, 4), device=device) with torch.no_grad(): ref_output = model(x) torch._dynamo.reset() with torch.no_grad(): dim0_x = Dim("dim0_x", min=1, max=1024) dynamic_shapes = {"x": {0: dim0_x}} model_so_path = aot_compile( model, (x,), dynamic_shapes=dynamic_shapes, options={ "aot_inductor.use_runtime_constant_folding": use_runtime_constant_folding }, ) suffix = f"{device}" if use_runtime_constant_folding: suffix += "_use_runtime_constant_folding" data.update( { f"model_so_path_{suffix}": model_so_path, f"inputs_{suffix}": [x], f"outputs_{suffix}": [ref_output], f"w_pre_{suffix}": model.w_pre, f"w_add_{suffix}": model.w_add, } ) # AOTI model which will create additional tensors during autograd. def generate_test_with_additional_tensors(): if not torch.cuda.is_available(): return model = NetWithTensorConstants() x = torch.randn((30, 1), device="cuda") y = torch.randn((30, 1), device="cuda") with torch.no_grad(): ref_output = model(x, y) torch._dynamo.reset() with torch.no_grad(): model_so_path = aot_compile(model, (x, y)) data_with_tensor_constants.update( { "model_so_path": model_so_path, "inputs": [x, y], "outputs": [ref_output], "w": model.w, } ) generate_basic_tests() generate_test_with_additional_tensors() # Use this to communicate tensors to the cpp code class Serializer(torch.nn.Module): def __init__(self, data): super().__init__() for key in data: setattr(self, key, data[key]) torch.jit.script(Serializer(data)).save("data.pt") torch.jit.script(Serializer(data_with_tensor_constants)).save( "data_with_tensor_constants.pt" )