# Copyright (c) Meta Platforms, Inc. and affiliates # Owner(s): ["oncall: distributed"] import itertools from typing import cast, List, Optional import torch import torch.nn.functional as F from torch.distributed._tensor import DeviceMesh, distribute_tensor from torch.distributed._tensor.api import DTensor from torch.distributed._tensor.placement_types import ( Partial, Placement, Replicate, Shard, ) from torch.distributed.tensor.debug import CommDebugMode from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, skip_unless_torch_gpu, with_comms, ) class DistMatrixOpsTest(DTensorTestBase): @with_comms def test_addmm(self): device_mesh = DeviceMesh(self.device_type, list(range(self.world_size))) shard_spec = [Shard(0)] replica_spec = [Replicate()] tensor_to_shard = torch.randn(12, 8) mat1 = distribute_tensor(tensor_to_shard, device_mesh, shard_spec) tensor_to_replicate = torch.randn(8, 4) mat2 = distribute_tensor(tensor_to_replicate, device_mesh, replica_spec) input_tensor = torch.randn(4) input = distribute_tensor(input_tensor, device_mesh, replica_spec) dist_res = torch.addmm(input, mat1, mat2) local_res = torch.addmm(input_tensor, tensor_to_shard, tensor_to_replicate) self.assertEqual(dist_res.full_tensor(), local_res) @with_comms def test_addmm_empty_operand(self): device_mesh = DeviceMesh(self.device_type, list(range(self.world_size))) shard_spec = [Shard(0)] replica_spec = [Replicate()] tensor_to_shard = torch.randn(12, 0) mat1 = distribute_tensor(tensor_to_shard, device_mesh, shard_spec) tensor_to_replicate = torch.randn(0, 4) mat2 = distribute_tensor(tensor_to_replicate, device_mesh, replica_spec) input_tensor = torch.randn(4) inp = distribute_tensor(input_tensor, device_mesh, replica_spec) dist_res = torch.addmm(inp, mat1, mat2) local_res = torch.addmm(input_tensor, tensor_to_shard, tensor_to_replicate) self.assertEqual(dist_res.full_tensor(), local_res) @with_comms def test_addmm_auto_redistribute(self): device_mesh = DeviceMesh(self.device_type, list(range(self.world_size))) shard0_spec = [Shard(0)] shard1_spec = [Shard(1)] replica_spec = [Replicate()] tensor_to_shard1 = torch.randn(12, 8, requires_grad=True) mat1 = distribute_tensor(tensor_to_shard1, device_mesh, shard1_spec) tensor_to_shard0 = torch.randn(8, 4, requires_grad=True) mat2 = distribute_tensor(tensor_to_shard0, device_mesh, shard0_spec) input_tensor = torch.randn(4, requires_grad=True) input = distribute_tensor(input_tensor, device_mesh, replica_spec) local_res = torch.addmm(input_tensor, tensor_to_shard1, tensor_to_shard0) dist_res = torch.addmm(input, mat1, mat2) # test if addmm output is a partial self.assertIsInstance(dist_res, DTensor) self.assertIsInstance(dist_res.placements[0], Partial) # test if result is the same as tensor dist_local_res = dist_res.full_tensor() self.assertEqual(local_res, dist_local_res) # backward checks dist_local_res.sum().backward() local_res.sum().backward() self.assertIsNotNone(mat2.grad) self.assertEqual(mat2.grad.full_tensor(), tensor_to_shard0.grad) @with_comms def test_mm(self): device_mesh = DeviceMesh(self.device_type, list(range(self.world_size))) shard0_spec = Shard(0) shard1_spec = Shard(1) replica_spec = Replicate() t1 = torch.randn(12, 8, requires_grad=True) t2 = torch.randn(8, 16, requires_grad=True) local_res = torch.mm(t1, t2) def test_placement_comb( placements1: List[Placement], placements2: List[Placement] ) -> None: dt1 = distribute_tensor(t1, device_mesh, placements1) dt2 = distribute_tensor(t2, device_mesh, placements2) dist_res: DTensor = cast(DTensor, torch.mm(dt1, dt2)).redistribute( device_mesh, [replica_spec] ) self.assertEqual(dist_res.to_local(), local_res) # backward grad_dist_res = torch.ones_like(dist_res) dist_res.backward(grad_dist_res) self.assertIsNotNone(dt1.grad) placement_specs = [shard0_spec, shard1_spec, replica_spec] shard_specs_comb = list(itertools.product(placement_specs, placement_specs)) for spec in shard_specs_comb: test_placement_comb([spec[0]], [spec[1]]) @with_comms def test_t(self): device_mesh = DeviceMesh(self.device_type, list(range(self.world_size))) shard_spec = [Shard(0)] tensor_to_transpose = torch.randn(12, 8, requires_grad=True) mat = distribute_tensor(tensor_to_transpose, device_mesh, shard_spec) tranposed_mat = mat.t() self.assertEqual(tranposed_mat.size(), torch.Size([8, 12])) self.assertEqual(tranposed_mat.placements, [Shard(1)]) tranposed_mat2 = tranposed_mat.t() self.assertEqual(tranposed_mat2.size(), torch.Size([12, 8])) self.assertEqual(tranposed_mat2.placements, shard_spec) @with_comms def test_t_partial(self): device_mesh = DeviceMesh(self.device_type, list(range(self.world_size))) a = torch.randn(12, 8) b = torch.randn(8, 4) c = torch.mm(a, b).t() da = distribute_tensor(a, device_mesh, [Shard(1)]) db = distribute_tensor(b, device_mesh, [Shard(0)]) # mm(da, db) should return a Partial tensor. # transposing it should keep it Partial dc = torch.mm(da, db).t() self.assertTrue(isinstance(dc.placements[0], Partial)) # check that the local and distributed op results match self.assertEqual( c, dc.redistribute(device_mesh, [Replicate()]).to_local(), ) # baddbmm introduces nan occasionally on CPU: https://github.com/pytorch/pytorch/issues/80588 @with_comms @skip_unless_torch_gpu def test_baddbmm(self): device_mesh = DeviceMesh(self.device_type, list(range(self.world_size))) tensor = torch.rand(4, 4, 8, device=self.device_type, requires_grad=True) batch_1 = torch.rand(4, 4, 8, device=self.device_type, requires_grad=True) batch_2 = torch.rand(4, 8, 8, device=self.device_type, requires_grad=True) def test_placement_comb( tensor_placements: List[Placement], batch_1_placements: List[Placement], batch_2_placements: List[Placement], beta: int, alpha: int, batch_1_grad: Optional[torch.Tensor], ) -> None: tensor_dt = distribute_tensor(tensor, device_mesh, tensor_placements) batch_1_dt = distribute_tensor(batch_1, device_mesh, batch_1_placements) batch_2_dt = distribute_tensor(batch_2, device_mesh, batch_2_placements) dist_res = cast( DTensor, torch.baddbmm( tensor_dt, batch_1_dt, batch_2_dt, beta=beta, alpha=alpha ), ).redistribute(device_mesh, [Replicate()]) dist_local_res = dist_res.to_local() assert not torch.isnan(local_result).any() assert not torch.isnan(dist_local_res).any() self.assertEqual(dist_local_res.detach(), local_result.detach()) # TODO: add test backward # grad_dist_res = torch.ones_like(dist_res) # dist_res.backward(grad_dist_res) # self.assertIsNotNone(batch_1_dt.grad) # batch_1_grad_local = batch_1_dt.grad.redistribute( # device_mesh, [Replicate()] # ).to_local() # self.assertEqual(batch_1_grad_local, batch_1_grad) shard0_spec = Shard(0) shard1_spec = Shard(1) shard2_spec = Shard(2) replica_spec = Replicate() shard_specs = [shard0_spec, shard1_spec, shard2_spec, replica_spec] shard_specs_comb = list( itertools.product(shard_specs, shard_specs, shard_specs) ) # If beta is 0, input tensor will be ignored numeric_params_comb = [ (0.0, 0.5), # zero-beta (0.8, 0.5), # non-zero-beta ] for beta, alpha in numeric_params_comb: local_result = torch.baddbmm( tensor, batch_1, batch_2, beta=beta, alpha=alpha ) grad_local_res = torch.ones_like(local_result) local_result.backward(grad_local_res) # test all combos for spec in shard_specs_comb: test_placement_comb( [spec[0]], [spec[1]], [spec[2]], beta, alpha, batch_1.grad ) @with_comms def test_bmm(self): device_mesh = DeviceMesh(self.device_type, list(range(self.world_size))) mat1 = torch.rand(4, 8, 4, device=self.device_type, requires_grad=True) mat2 = torch.rand(4, 4, 8, device=self.device_type, requires_grad=True) local_result = torch.bmm(mat1, mat2) grad_local_res = torch.ones_like(local_result) local_result.backward(grad_local_res) def test_placement_comb( placements1: List[Placement], placements2: List[Placement], ) -> None: mat1_dt = distribute_tensor(mat1, device_mesh, placements1) mat2_dt = distribute_tensor(mat2, device_mesh, placements2) dist_res = cast(DTensor, torch.bmm(mat1_dt, mat2_dt)).redistribute( device_mesh, [Replicate()] ) dist_local_res = dist_res.to_local() self.assertEqual(dist_local_res, local_result) # test backward # TODO: figure out (replicate, shard1) fail on backward # it generates a different grad shape grad_dist_res = torch.ones_like(dist_res) dist_res.backward(grad_dist_res) self.assertIsNotNone(mat1_dt.grad) mat1_dt_grad = cast(DTensor, mat1_dt.grad) mat1_grad_local = mat1_dt_grad.redistribute( device_mesh, [Replicate()] ).to_local() self.assertEqual(mat1_grad_local, mat1.grad) shard0_spec = Shard(0) shard1_spec = Shard(1) shard2_spec = Shard(2) replica_spec = Replicate() placement_specs = [shard0_spec, shard1_spec, shard2_spec, replica_spec] shard_specs_comb = list(itertools.product(placement_specs, placement_specs)) # tests that currently pass for spec in shard_specs_comb: test_placement_comb([spec[0]], [spec[1]]) @with_comms @skip_unless_torch_gpu def test_scaled_dot_product_attention(self): device_mesh = DeviceMesh(self.device_type, list(range(self.world_size))) comm_mode = CommDebugMode() # bsz, n_heads, slen, head_dim query = torch.rand( (4, 8, 8, 8), device=self.device_type, dtype=torch.bfloat16, requires_grad=True, ) key = torch.rand( (4, 8, 8, 8), device=self.device_type, dtype=torch.bfloat16, requires_grad=True, ) value = torch.rand( (4, 8, 8, 8), device=self.device_type, dtype=torch.bfloat16, requires_grad=True, ) dist_query = distribute_tensor(query, device_mesh, [Shard(1)]) dist_key = distribute_tensor(key, device_mesh, [Shard(1)]) dist_value = distribute_tensor(value, device_mesh, [Shard(1)]) from torch.nn.attention import sdpa_kernel, SDPBackend available_backends = [] dropout_p = 0.0 # TODO: Add test cases where is_causal=False and an attention mask is provided. # Gaps include missing op support for aten.masked_fill_.Scalar. is_causal = True enable_gqa = False params = torch.backends.cuda.SDPAParams( query, key, value, None, dropout_p, is_causal, enable_gqa ) if torch.backends.cuda.can_use_flash_attention(params, debug=False): available_backends.append(SDPBackend.FLASH_ATTENTION) if torch.backends.cuda.can_use_efficient_attention(params, debug=False): available_backends.append(SDPBackend.EFFICIENT_ATTENTION) for backend in available_backends: with sdpa_kernel(backends=[backend]): out = F.scaled_dot_product_attention( query, key, value, dropout_p=dropout_p, is_causal=is_causal ) with comm_mode: dist_out = F.scaled_dot_product_attention( dist_query, dist_key, dist_value, dropout_p=dropout_p, is_causal=is_causal, ) self.assertEqual(comm_mode.get_total_counts(), 0) self.assertTrue(dist_out.placements[0].is_shard(dim=1)) self.assertEqual(dist_out.full_tensor(), out) out.sum().backward() with comm_mode: dist_out.sum().backward() self.assertEqual(comm_mode.get_total_counts(), 0) self.assertTrue(dist_query.grad.placements[0].is_shard(dim=1)) self.assertEqual(dist_query.grad.full_tensor(), query.grad) self.assertTrue(dist_key.grad.placements[0].is_shard(dim=1)) self.assertEqual(dist_key.grad.full_tensor(), key.grad) self.assertTrue(dist_value.grad.placements[0].is_shard(dim=1)) self.assertEqual(dist_value.grad.full_tensor(), value.grad) if __name__ == "__main__": run_tests()