# Owner(s): ["oncall: distributed"] from copy import deepcopy import torch import torch.nn as nn from torch.distributed._tensor import ( DeviceMesh, distribute_module, distribute_tensor, DTensor, Replicate, Shard, ) from torch.testing._internal.common_utils import run_tests from torch.testing._internal.distributed._tensor.common_dtensor import ( DTensorTestBase, MLPModule, with_comms, ) # shard function to do full sharding on all parameters of a module def shard_fn(name, module, device_mesh): if isinstance(module, nn.Linear): for name, param in module.named_parameters(): dist_param = torch.nn.Parameter( distribute_tensor(param, device_mesh, [Shard(0)]) ) # make sure partial sum get cleared after backward() dist_param.register_hook( lambda grad: grad.redistribute(placements=[Shard(0)]) ) module.register_parameter(name, dist_param) # prepare input def input_fn(mod, inputs, device_mesh): # split the input tensor to be sharded input dist_inp = distribute_tensor(inputs[0], device_mesh, [Shard(0)]) return dist_inp # prepare output to be local torch.Tensor def output_fn(mod, outputs, device_mesh): assert isinstance(outputs, DTensor) return outputs.redistribute(placements=[Replicate()] * device_mesh.ndim).to_local() class TestDTensorOptimizer(DTensorTestBase): def _assert_optimizer( self, mesh, model, optim, dist_model, dist_optim, inputs, *, rtol: float = 1.3e-6, atol: float = 1e-5, ): for iter_idx in range(2): # run forward/backward/optim for original model optim.zero_grad(set_to_none=(iter_idx % 2 == 0)) out = model(inputs) loss = out.sum() loss.backward() optim.step() # run forward/backward/optim for distributed model dist_optim.zero_grad(set_to_none=(iter_idx % 2 == 0)) dist_out = dist_model(inputs) dist_loss = dist_out.sum() dist_loss.backward() dist_optim.step() # check that the optimizer update parameters with same numerics for p1, p2 in zip(model.parameters(), dist_model.parameters()): p2 = p2.full_tensor() # Default 'rtol' and 'atol' for attr:`~torch.float32` are ``1.3e-6`` and ``1e-5`` self.assertEqual(p1, p2, atol=atol, rtol=rtol) def test_optimizer_foreach_supported_types_include_DTensor(self): from torch.optim.optimizer import _foreach_supported_types self.assertTrue(DTensor in _foreach_supported_types) @with_comms def test_adam_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) # lr as a Tensor is not supported for capturable=False and foreach=True adam_float_lr_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05}, {"lr": 0.1, "weight_decay": 0.05, "amsgrad": True}, { "lr": 0.1, "weight_decay": 0.05, "maximize": True, "amsgrad": True, }, ] fused_adam_float_lr_configs = [ {"lr": 0.1, "fused": True}, {"lr": 0.1, "weight_decay": 0.05, "amsgrad": True, "fused": True}, { "lr": 0.1, "weight_decay": 0.05, "maximize": True, "amsgrad": True, "fused": True, }, ] # lr could be a Tensor or a float when fused=True for adam optimizer fused_adam_tensor_lr_configs = [ {**config, "lr": torch.tensor(0.1)} for config in fused_adam_float_lr_configs ] fused_adam_tensor_lr_configs.extend( [ {**config, "lr": torch.tensor([0.1])} for config in fused_adam_float_lr_configs ] ) adam_configs = [ *adam_float_lr_configs, *fused_adam_float_lr_configs, *fused_adam_tensor_lr_configs, ] for config in adam_configs: mod = MLPModule(self.device_type) opt = torch.optim.Adam(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.Adam(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_adamw_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) # lr as a Tensor is not supported for capturable=False and foreach=True adamw_float_lr_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05}, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "amsgrad": True, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "maximize": True, "amsgrad": True, }, ] fused_adamw_float_lr_configs = [ {"lr": 0.1, "weight_decay": 0.05, "fused": True}, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "amsgrad": True, "fused": True, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "maximize": True, "amsgrad": True, "fused": True, }, ] # lr could be a Tensor or a float when fused=True for adamW optimizer fused_adamw_tensor_lr_configs = [ {**config, "lr": torch.tensor(0.1)} for config in fused_adamw_float_lr_configs ] fused_adamw_tensor_lr_configs.extend( [ {**config, "lr": torch.tensor([0.1])} for config in fused_adamw_float_lr_configs ] ) adamw_configs = [ *adamw_float_lr_configs, *fused_adamw_float_lr_configs, *fused_adamw_tensor_lr_configs, ] for config in adamw_configs: mod = MLPModule(self.device_type) opt = torch.optim.AdamW(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.AdamW(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_sgd_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) sgd_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "momentum": 0.05, "foreach": False}, {"lr": 0.1, "momentum": 0.05}, {"lr": 0.1, "momentum": 0.06, "dampening": 0.07}, { "lr": 0.1, "momentum": 0.08, "weight_decay": 0.05, "nesterov": True, "maximize": True, "foreach": False, }, { "lr": 0.1, "momentum": 0.08, "weight_decay": 0.05, "nesterov": True, "maximize": True, }, ] for config in sgd_configs: mod = MLPModule(self.device_type) opt = torch.optim.SGD(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.SGD(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_adagrad_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) adagrad_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "lr_decay": 0.05, "foreach": False}, {"lr": 0.1, "lr_decay": 0.02, "weight_decay": 0.05, "foreach": False}, { "lr": 0.1, "lr_decay": 0.02, "weight_decay": 0.05, "initial_accumulator_value": 0.03, "foreach": False, }, { "lr": 0.1, "lr_decay": 0.02, "weight_decay": 0.05, "initial_accumulator_value": 0.03, "eps": 1e-6, "foreach": False, }, { "lr": 0.1, "lr_decay": 0.02, "weight_decay": 0.05, "initial_accumulator_value": 0.03, "eps": 1e-6, "maximize": True, "foreach": False, }, { "lr": 0.1, "lr_decay": 0.02, "weight_decay": 0.05, "initial_accumulator_value": 0.03, "eps": 1e-6, "maximize": True, }, ] for config in adagrad_configs: mod = MLPModule(self.device_type) opt = torch.optim.Adagrad(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.Adagrad(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_RMSprop_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) RMSprop_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "alpha": 0.85, "foreach": False}, {"lr": 0.1, "alpha": 0.88, "eps": 1e-6, "foreach": False}, { "lr": 0.1, "alpha": 0.88, "eps": 1e-6, "weight_decay": 0.05, "foreach": False, }, { "lr": 0.1, "alpha": 0.88, "eps": 1e-6, "weight_decay": 0.05, "momentum": 0.9, "foreach": False, }, { "lr": 0.1, "alpha": 0.88, "eps": 1e-6, "weight_decay": 0.05, "momentum": 0.9, "centered": True, "foreach": False, }, { "lr": 0.1, "alpha": 0.88, "eps": 1e-6, "weight_decay": 0.05, "momentum": 0.9, "centered": True, "maximize": True, "foreach": False, }, { "lr": 0.1, "alpha": 0.88, "eps": 1e-6, "weight_decay": 0.05, "momentum": 0.9, "centered": True, "maximize": True, }, ] for config in RMSprop_configs: mod = MLPModule(self.device_type) opt = torch.optim.RMSprop(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.RMSprop(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_adadelta_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) adadelta_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "rho": 0.85, "foreach": False}, {"lr": 0.1, "rho": 0.88, "eps": 1e-5, "foreach": False}, { "lr": 0.1, "rho": 0.88, "eps": 1e-6, "weight_decay": 0.05, "foreach": False, }, { "lr": 0.1, "rho": 0.88, "eps": 1e-6, "weight_decay": 0.05, }, { "lr": 0.1, "rho": 0.88, "eps": 1e-6, "weight_decay": 0.05, "maximize": True, }, ] for config in adadelta_configs: mod = MLPModule(self.device_type) opt = torch.optim.Adadelta(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.Adadelta(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_nadam_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) nadam_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05}, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "decoupled_weight_decay": True, }, ] for config in nadam_configs: mod = MLPModule(self.device_type) opt = torch.optim.NAdam(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.NAdam(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_radam_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) radam_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "weight_decay": 0.05, "foreach": False}, { "lr": 0.1, "weight_decay": 0.05, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "decoupled_weight_decay": True, }, ] for config in radam_configs: mod = MLPModule(self.device_type) opt = torch.optim.RAdam(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.RAdam(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_adamax_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) adamax_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "betas": (0.6, 0.66), "foreach": False}, {"lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "foreach": False}, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "foreach": False, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, }, { "lr": 0.1, "betas": (0.6, 0.66), "eps": 1e-6, "weight_decay": 0.05, "maximize": True, }, ] for config in adamax_configs: mod = MLPModule(self.device_type) opt = torch.optim.Adamax(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.Adamax(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) self._assert_optimizer(mesh, mod, opt, dist_mod, dist_opt, inp) @with_comms def test_asgd_1d_sharding(self): mesh = DeviceMesh(self.device_type, list(range(self.world_size))) asgd_configs = [ {"lr": 0.1, "foreach": False}, {"lr": 0.1, "lambd": 0.001, "foreach": False}, {"lr": 0.1, "lambd": 0.001, "alpha": 0.85, "foreach": False}, {"lr": 0.1, "lambd": 0.001, "alpha": 0.85, "t0": 1e5, "foreach": False}, { "lr": 0.1, "lambd": 0.001, "alpha": 0.85, "t0": 1e5, "weight_decay": 0.05, "foreach": False, }, { "lr": 0.1, "lambd": 0.001, "alpha": 0.85, "t0": 1e5, "weight_decay": 0.05, "foreach": True, }, { "lr": 0.1, "lambd": 0.001, "alpha": 0.85, "t0": 1e5, "weight_decay": 0.05, "foreach": True, "maximize": True, }, ] for config in asgd_configs: mod = MLPModule(self.device_type) opt = torch.optim.ASGD(mod.parameters(), **config) dist_mod = distribute_module( deepcopy(mod), mesh, shard_fn, input_fn, output_fn ) dist_opt = torch.optim.ASGD(dist_mod.parameters(), **config) # use ones to make sure the single machine model have the same input # on different ranks inp = torch.ones(8, 10, device=self.device_type) # TODO: We want to keep a unit test for ASGD optimizer for the time being, but we need to look into why # when using ASGD we need higher atol and rtol when comparing model parameters. # Default 'rtol' and 'atol' for attr:`~torch.float32` are ``1.3e-6`` and ``1e-5`` # Pointer here: https://github.com/pytorch/pytorch/blob/main/torch/testing/_comparison.py#L65 self._assert_optimizer( mesh, mod, opt, dist_mod, dist_opt, inp, atol=1.3e-5, rtol=1e-4 ) if __name__ == "__main__": run_tests()