# Owner(s): ["module: inductor"] # flake8: noqa: B950 import functools from collections import namedtuple from contextlib import nullcontext from typing import Callable, Optional from unittest import expectedFailure, skipUnless from unittest.mock import patch import torch from torch._inductor.test_case import TestCase as InductorTestCase from torch._inductor.utils import run_and_get_code from torch.nn.attention.flex_attention import ( _create_empty_block_mask, _identity, BlockMask, create_block_mask, flex_attention, ) from torch.testing import FileCheck from torch.testing._internal import common_utils from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_BF16 from torch.testing._internal.common_utils import skipIfRocm, TEST_WITH_ROCM from torch.utils._triton import has_triton # Skip tests if Triton is not available supported_platform = skipUnless( torch.cuda.is_available() and has_triton() and torch.cuda.get_device_capability() >= (8, 0), "Requires CUDA and Triton", ) Tolerances = namedtuple("Tolerances", ["atol", "rtol"]) torch.set_float32_matmul_precision("high") index = torch.ops.aten.index Tensor = torch.Tensor def create_attention(score_mod, block_mask, enable_gqa=False): return functools.partial( flex_attention, score_mod=score_mod, block_mask=block_mask, enable_gqa=enable_gqa, ) def create_block_mask_test(score_mod, query, key): block_mask = create_block_mask( score_mod, 1, 1, query.shape[-2], key.shape[-2], query.device ) return block_mask test_dtypes = ( [torch.float16, torch.bfloat16, torch.float32] if PLATFORM_SUPPORTS_BF16 else [torch.float16, torch.float32] ) test_dtypes_fast = [torch.float16] # --------- Useful score mod functions for testing --------- def _causal( score: Tensor, batch: Tensor, head: Tensor, token_q: Tensor, token_kv: Tensor, ) -> Tensor: return torch.where(token_q >= token_kv, score, float("-inf")) def _generate_windowed(offset): def _windowed(score, b, h, q, kv): return torch.where(q + offset >= kv, score, float("-inf")) return _windowed def _get_windowed_sdpa_mask(Mq, Mkv, offset): return torch.tril(torch.ones(Mkv, Mkv, dtype=torch.bool, device="cuda"))[ offset : offset + Mq ] def _rel_bias( score: Tensor, batch: Tensor, head: Tensor, token_q: Tensor, token_kv: Tensor, ) -> Tensor: return score + (token_q - token_kv) def _rel_causal( score: Tensor, batch: Tensor, head: Tensor, token_q: Tensor, token_kv: Tensor, ) -> Tensor: return torch.where(token_q >= token_kv, score + (token_q - token_kv), float("-inf")) def _generate_alibi_bias(num_heads: int): def _alibi_bias( score: Tensor, batch: Tensor, head: Tensor, token_q: Tensor, token_kv: Tensor, ) -> Tensor: scale = torch.exp2(-((head + 1) * 8.0 / num_heads)) return score + (token_kv - token_q) * scale return _alibi_bias def _inverse_causal(score, b, h, m, n): return torch.where(m <= n, score, float("-inf")) def _times_two(score, b, h, m, n): """Joint graph needed for correctness""" return score * 2 def _squared(score, b, h, m, n): """Joint graph needed for correctness""" return score * score def _head_offset(dtype: torch.dtype): """Captured Buffer""" head_offset = torch.rand(Hq, device="cuda", dtype=dtype) def score_mod(score, b, h, m, n): return score * head_offset[h] return score_mod def _trig(score, b, h, m, n): """Joint graph needed for correctness""" return torch.sin(torch.cos(score)) + torch.tan(b) def _trig2(score, b, h, m, n): """Branching joint graph""" cos_score = torch.cos(score) sin_score = torch.sin(score) z = cos_score * sin_score + torch.tan(b) return z test_score_mods = [ _identity, _times_two, _squared, _causal, _inverse_causal, _rel_bias, _rel_causal, _generate_alibi_bias(8), _generate_windowed(1000), ] captured_buffers_map = { "_head_offset": _head_offset, } B = 4 S = 2048 D = 64 test_Hq_Hkv = [ (16, 1), (8, 2), (16, 16), ] (Hq, Hkv) = (16, 8) def query_key_value_clones( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, dtype: torch.dtype = None, ): """Clones the query, key, and value tensors and moves them to the specified dtype.""" if dtype is None: dtype = query.dtype query_ref = query.clone().detach().to(dtype).requires_grad_(query.requires_grad) key_ref = key.clone().detach().to(dtype).requires_grad_(key.requires_grad) value_ref = value.clone().detach().to(dtype).requires_grad_(value.requires_grad) return query_ref, key_ref, value_ref class TestFlexDecoding(InductorTestCase): def _check_equal( self, golden_out: torch.Tensor, ref_out: torch.Tensor, compiled_out: torch.Tensor, fudge_factor: float, tensor_name: Optional[str] = None, ): compiled_error = (golden_out - compiled_out).abs().mean() ref_error = (golden_out - ref_out).abs().mean() if torch.isnan(compiled_error).any() and not torch.isnan(ref_error).any(): self.assertTrue(False, "Output/Grad with NaN") if ref_error < (1e-4) * golden_out.abs().mean(): print( "very small ref error of ", (ref_error.to(torch.float64) * (1e5) / golden_out.abs().mean()), ) tolerance = Tolerances(atol=2e-1, rtol=2e-1) torch.testing.assert_close( golden_out.to(dtype=compiled_out.dtype), compiled_out, atol=tolerance.atol, rtol=tolerance.rtol, ) elif compiled_error > ref_error * fudge_factor: name = tensor_name if tensor_name is not None else "" msg = f"{name} Compiled error {compiled_error} is greater than ref error {ref_error} by more than {fudge_factor}X." self.assertTrue(False, msg) def _check_out( self, golden_out: torch.Tensor, ref_out: torch.Tensor, compiled_out: torch.Tensor, ): dtype = ref_out.dtype with torch.no_grad(): # Note, it seems like we really are less accurate than the float32 # computation, likely due to the online softmax if dtype == torch.float32: fudge_factor = 10.0 else: fudge_factor = 1.1 # Checkout output self._check_equal(golden_out, ref_out, compiled_out, fudge_factor, "Out") def run_test( self, score_mod: Optional[Callable], dtype: torch.dtype = torch.float16, Q_B: int = B, Q_H: int = Hq, Q_S: int = 1, Q_D: int = D, KV_B: int = B, KV_H: int = Hkv, KV_S: int = S, V_D: int = D, block_mask: Optional[BlockMask] = None, ): assert ( score_mod is not None or block_mask is not None ), "Must provide score_mod or block_mask" assert Q_H % KV_H == 0 if TEST_WITH_ROCM and Q_H != KV_H: self.skipTest("enable_gqa=True is unsupported on ROCM, for now") q = torch.randn( (Q_B, Q_H, Q_S, Q_D), dtype=dtype, device="cuda", requires_grad=False, ) k = torch.randn( (KV_B, KV_H, KV_S, Q_D), dtype=dtype, device="cuda", requires_grad=False ) v = torch.randn( (KV_B, KV_H, KV_S, V_D), dtype=dtype, device="cuda", requires_grad=False ) q_ref, k_ref, v_ref = query_key_value_clones(q, k, v) q_gold, k_gold, v_gold = query_key_value_clones(q, k, v, torch.float64) sdpa_partial = create_attention( score_mod, block_mask, enable_gqa=(not Q_H == KV_H) ) compiled_sdpa = torch.compile(sdpa_partial) golden_out, gold_lse = sdpa_partial(q_gold, k_gold, v_gold, return_lse=True) ref_out, ref_lse = sdpa_partial(q_ref, k_ref, v_ref, return_lse=True) compiled_out, compiled_lse = compiled_sdpa(q, k, v, return_lse=True) self._check_out( golden_out, ref_out, compiled_out, ) self._check_out( gold_lse, ref_lse, compiled_lse, ) def run_test_with_call( self, sdpa_call: Callable, golden_call: Optional[Callable] = None, dtype: torch.dtype = torch.float16, Q_B: int = B, Q_H: int = Hq, Q_S: int = 1, Q_D: int = D, KV_B: int = B, KV_H: int = Hkv, KV_S: int = S, V_D: int = D, ): if not golden_call: golden_call = sdpa_call q = torch.randn( (Q_B, KV_H, Q_S * (Q_H // KV_H), Q_D), dtype=dtype, device="cuda", requires_grad=False, ) k = torch.randn( (KV_B, KV_H, KV_S, Q_D), dtype=dtype, device="cuda", requires_grad=False ) v = torch.randn( (KV_B, KV_H, KV_S, V_D), dtype=dtype, device="cuda", requires_grad=False ) q_ref, k_ref, v_ref = query_key_value_clones(q, k, v) q_gold, k_gold, v_gold = query_key_value_clones(q, k, v, torch.float64) compiled_sdpa = torch.compile(sdpa_call) golden_out = golden_call(q_gold, k_gold, v_gold) ref_out = golden_call(q_ref, k_ref, v_ref) compiled_out = compiled_sdpa(q, k, v) self._check_out( golden_out, ref_out, compiled_out, ) @supported_platform @expectedFailure @common_utils.parametrize("dtype", test_dtypes_fast) def test_bw_decoding_fails(self, dtype): make_kv = functools.partial( torch.randn, (2, 2, 128, 4), dtype=dtype, device="cuda", requires_grad=True, ) make_q = functools.partial( torch.randn, (2, 2, 8, 4), dtype=dtype, device="cuda", requires_grad=True, ) q, k, v, backward_grad = make_q(), make_kv(), make_kv(), make_q() block_mask = _create_empty_block_mask(q, k) @torch.compile def sdpa_hop(q, k, v, score_mod, block_mask): return flex_attention(q, k, v, score_mod) output = sdpa_hop(q, k, v, _identity, block_mask) output.backward(backward_grad) @supported_platform @common_utils.parametrize("dtype", test_dtypes) @common_utils.parametrize("score_mod", test_score_mods) @common_utils.parametrize("head_dims", test_Hq_Hkv) def test_builtin_score_mods( self, dtype: torch.dtype, score_mod: Callable, head_dims ): Hq, Hkv = head_dims assert Hq % Hkv == 0 self.run_test(score_mod, dtype, Q_H=Hq, KV_H=Hkv) def input_strides_1(B, H, S, D): return ((H * S * D, S * D, D, 1), 997) # offset def input_strides_2(B, H, S, D): return ((H * D, D, B * H * D, 1), 499) # transposed dimensions def input_strides_3(B, H, S, D): return ((S * (D + 1), B * S * (D + 1), (D + 1), 1), 293) # additional buffer def input_strides_4(B, H, S, D): return ((1, D, (B + 1) * (H + 1) * D, 1), 97) # shared dimension test_input_strides = [ input_strides_1, input_strides_2, input_strides_3, input_strides_4, ] @supported_platform @common_utils.parametrize("dtype", test_dtypes_fast) @common_utils.parametrize("k_s", test_input_strides) @common_utils.parametrize("v_s", test_input_strides) @common_utils.parametrize("head_dims", test_Hq_Hkv) def test_strided_inputs(self, dtype: torch.dtype, k_s, v_s, head_dims): Hq, Hkv = head_dims assert Hq % Hkv == 0 q1 = torch.randn((B * Hq * D), dtype=dtype, device="cuda") k1 = torch.randn((B * Hkv * S * D * 4), dtype=dtype, device="cuda") v1 = torch.randn((B * Hkv * S * D * 4), dtype=dtype, device="cuda") k_shape = (B, Hkv, S, D) v_shape = (B, Hkv, S, D) q = q1.view(1, Hq, B, D).transpose(0, 2) k_strides, k_offset = k_s(B, Hkv, S, D) k_max = [x * (y - 1) for x, y in zip(k_strides, k_shape)] assert sum(k_max) + k_offset < B * Hkv * S * D * 4 assert k_strides[-1] == 1 k = torch.as_strided(k1, k_shape, k_strides, k_offset) v_strides, v_offset = v_s(B, Hkv, S, D) v_max = [x * (y - 1) for x, y in zip(v_strides, v_shape)] assert sum(v_max) + v_offset < B * Hkv * S * D * 4 assert v_strides[-1] == 1 v = torch.as_strided(v1, v_shape, v_strides, v_offset) sdpa_partial = create_attention( score_mod=_generate_alibi_bias(8), block_mask=None, enable_gqa=(not Hq == Hkv), ) compiled_sdpa = torch.compile(sdpa_partial) ref_out = sdpa_partial(q, k, v) compiled_out = compiled_sdpa(q, k, v) tolerance = Tolerances(atol=2e-1, rtol=2e-1) torch.testing.assert_close( ref_out, compiled_out, atol=tolerance.atol, rtol=tolerance.rtol ) @supported_platform @common_utils.parametrize("dtype", test_dtypes) def test_skip_odd_keys(self, dtype: torch.dtype): def score_mod(score, b, h, q, kv): return torch.where(kv % 2 == 0, score, float("-inf")) self.run_test(score_mod, dtype) @supported_platform @common_utils.parametrize("dtype", test_dtypes) def test_function_composition(self, dtype: torch.dtype): def score_mod_1(score, b, h, m, n): return score + (m - n) def score_mod_2(score, b, h, m, n): return torch.where(m <= n, score, float("-inf")) def composed_score_mod(score, b, h, m, n): return score_mod_2(score_mod_1(score, b, h, m, n), b, h, m, n) self.run_test(composed_score_mod, dtype) @supported_platform @common_utils.parametrize("dtype", test_dtypes) def test_captured_buffers(self, dtype: torch.dtype): head_offset = torch.rand(Hq, device="cuda", dtype=dtype) def score_mod(score, b, h, m, n): return score + head_offset[h] self.run_test(score_mod, dtype) @supported_platform @common_utils.parametrize("dtype", test_dtypes) def test_captured_buffers_all_dims(self, dtype: torch.dtype): head_scale = torch.randn(Hq, device="cuda") batch_scale = torch.randn(B, device="cuda") kv_scale = torch.randn(S, device="cuda") q_scale = torch.randn(1, device="cuda") def all_bias(score, batch, head, token_q, token_kv): score = score + kv_scale[token_kv] score = score + q_scale[token_q] score = score + head_scale[head] score = score + batch_scale[batch] return score self.run_test(all_bias, dtype) @supported_platform @common_utils.parametrize("dtype", test_dtypes_fast) def test_seq_masking(self, dtype): seq_idx = torch.zeros(S, device="cuda", dtype=torch.bool) seq_idx[S // 2 :] = 1 def seq_mask_mod(score, b, h, q, kv): return torch.where(seq_idx[q] == seq_idx[kv], score, float("-inf")) self.run_test(seq_mask_mod, dtype) @supported_platform @common_utils.parametrize("dtype", test_dtypes_fast) def test_load_from_bias_seq_only(self, dtype): bias = torch.randn(1, S, device="cuda", dtype=dtype) def bias_mod(score, b, h, q, kv): return score + bias[q, kv] self.run_test(bias_mod, dtype) @supported_platform @common_utils.parametrize("dtype", test_dtypes_fast) def test_load_from_bias_seq_batch(self, dtype): bias = torch.randn(B, 1, S, device="cuda", dtype=dtype) def bias_mod(score, b, h, q, kv): return score + bias[b, q, kv] self.run_test(bias_mod, dtype) @supported_platform @common_utils.parametrize("dtype", test_dtypes_fast) def test_load_from_bias_head_seq_batch(self, dtype): bias = torch.randn( B, Hq, 1, S, device="cuda", dtype=dtype, ) def bias_mod(score, b, h, q, kv): return score + bias[b, h, q, kv] self.run_test(bias_mod, dtype) # TODO this config segfaults with Triton without: # https://github.com/triton-lang/triton/pull/4540 @supported_platform @common_utils.parametrize("score_mod", test_score_mods) @common_utils.parametrize("dtype", test_dtypes) @common_utils.parametrize("head_dims", [(D, D // 2), (D // 2, D)]) def test_non_equal_head_dims(self, dtype, score_mod, head_dims): qk_d, v_d = head_dims context = nullcontext() if qk_d > v_d else self.assertRaises(ValueError) with context: self.run_test(score_mod, dtype, B, Hq, 1, qk_d, B, Hkv, S, V_D=v_d) @supported_platform @common_utils.parametrize("dtype", test_dtypes_fast) def test_subgraph_respect_decompostion(self, dtype): from torch._decomp import core_aten_decompositions from torch.fx.experimental.proxy_tensor import make_fx def score_mod_func(score, b, h, q, kv): return score - q // (1 + kv) make_kv = functools.partial( torch.randn, (2, 2, 128, 4), dtype=dtype, device="cuda", requires_grad=True, ) make_q = functools.partial( torch.randn, (2, 2, 8, 4), dtype=dtype, device="cuda", requires_grad=True, ) query, key, value = make_q(), make_kv(), make_kv() # floor_div is not decomposed in decompostion_table is empty attention = functools.partial(flex_attention, score_mod=score_mod_func) gm = make_fx(attention, decomposition_table={})(query, key, value) self.assertExpectedInline( gm.sdpa_score0.code.strip(), """\ def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1): add = torch.ops.aten.add.Tensor(arg4_1, 1); arg4_1 = None floor_divide = torch.ops.aten.floor_divide.default(arg3_1, add); arg3_1 = add = None sub = torch.ops.aten.sub.Tensor(arg0_1, floor_divide); arg0_1 = floor_divide = None return sub""", ) # floor_div is decomposed for core_aten_decompositions gm = make_fx(attention, decomposition_table=core_aten_decompositions())( query, key, value ) self.assertExpectedInline( gm.sdpa_score0.code.strip(), """\ def forward(self, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1): add = torch.ops.aten.add.Tensor(arg4_1, 1); arg4_1 = None div = torch.ops.aten.div.Tensor_mode(arg3_1, add, rounding_mode = 'floor'); arg3_1 = add = None sub = torch.ops.aten.sub.Tensor(arg0_1, div); arg0_1 = div = None return sub""", ) @supported_platform @common_utils.parametrize("dtype", test_dtypes_fast) def test_silu_on_score(self, dtype): def silu_score(score, b, h, q, kv): return torch.nn.functional.silu(score) self.run_test(silu_score, dtype) @supported_platform @common_utils.parametrize("dtype", test_dtypes_fast) def test_padded_dense_causal(self, dtype): seq_len = torch.arange(B, device="cuda", dtype=torch.int32) + 1 def create_padded_dense_wrapper(orig_score_mod): def njt_score_mod(qk, b, h, q, kv): return torch.where( qk <= seq_len[b], orig_score_mod(qk, b, h, q, kv), -float("inf") ) return njt_score_mod causal_njt = create_padded_dense_wrapper(_causal) self.run_test(causal_njt, dtype) @supported_platform @common_utils.parametrize("dtype", test_dtypes_fast) def test_captured_scale(self, dtype): scale = torch.ones((), device="cuda", dtype=torch.int32) def score_mod_scale(qk, b, h, q, kv): return qk + scale self.run_test(score_mod_scale, dtype) @supported_platform @common_utils.parametrize("dtype", test_dtypes_fast) def test_recompile_changed_score_mod(self, dtype): scale = torch.ones((), device="cuda", dtype=torch.int32) ADD = True def score_mod_scale(qk, b, h, q, kv): if ADD: return qk + scale else: return qk * scale self.run_test(score_mod_scale, dtype) ADD = False self.run_test(score_mod_scale, dtype) @supported_platform @expectedFailure # If we capture a tensor then we can perform a reduction on it, and that shouldn't be allowed @common_utils.parametrize("dtype", test_dtypes_fast) def test_captured_reduction(self, dtype): scale = torch.randn((B, 8), device="cuda") def score_mod_scale(qk, b, h, q, kv): return qk + scale[b].sum(dim=-1) self.run_test(score_mod_scale, dtype) @supported_platform def test_multiple_score_mod_calls(self): query = torch.randn((1, 8, 4, 64), dtype=torch.float32, device="cuda") keys = [ torch.randn((1, 8, 1024, 64), dtype=torch.float32, device="cuda") for _ in range(2) ] values = [ torch.randn((1, 8, 1024, 64), dtype=torch.float32, device="cuda") for _ in range(2) ] def scoremod_1(qk, b, h, q, kv): return qk + (q - kv) def scoremod_2(qk, b, h, q, kv): return torch.where(q >= kv, qk, -float("inf")) def f(q, k1, k2, v1, v2): q2 = flex_attention(q, k1, v1, score_mod=scoremod_1) return flex_attention(q2, k2, v2, score_mod=scoremod_2) out = f(query, *keys, *values) out2 = torch.compile(f)(query, *keys, *values) tolerance = Tolerances(atol=2e-1, rtol=2e-1) torch.testing.assert_close(out, out2, atol=tolerance.atol, rtol=tolerance.rtol) @supported_platform def test_multiple_score_mod_calls2(self): query = torch.randn((1, 8, 4, 64), dtype=torch.float32, device="cuda") keys = [ torch.randn((1, 8, 1024, 64), dtype=torch.float32, device="cuda") for _ in range(3) ] values = [ torch.randn((1, 8, 1024, 64), dtype=torch.float32, device="cuda") for _ in range(3) ] def scoremod_1(qk, b, h, q, kv): return qk + (q - kv) def scoremod_2(qk, b, h, q, kv): return torch.where(q >= kv, qk, -float("inf")) attention1 = functools.partial(flex_attention, score_mod=scoremod_1) def f(q, k1, k2, k3, v1, v2, v3): q2 = attention1(q, k1, v1) q3 = flex_attention(q2, k2, v2, score_mod=scoremod_2) return flex_attention(q3, k3, v3, score_mod=scoremod_1) out = f(query, *keys, *values) out2 = torch.compile(f)(query, *keys, *values) self.assertTrue((out - out2).abs().mean() < 1e-2) @supported_platform @common_utils.parametrize("dtype", test_dtypes) def test_njt_causal(self, dtype): offsets = torch.tensor( [0, 1024, 1024 + 512, S], device="cuda", dtype=torch.int32 ) seq_idx = torch.zeros(S, device="cuda", dtype=torch.int32) for idx in range(len(offsets) - 1): seq_idx[offsets[idx] : offsets[idx + 1]] = idx def create_njt_wrapper(orig_score_mod, offsets, seq_idx): def njt_score_mod(qk, b, h, q, kv): q_nested = q - offsets[seq_idx[q]] kv_nested = kv - offsets[seq_idx[kv]] return orig_score_mod(qk, b, h, q_nested, kv_nested) return njt_score_mod causal_njt = create_njt_wrapper(_causal, offsets, seq_idx) self.run_test(causal_njt, dtype) @supported_platform def test_mixed_dtypes_fails(self): query = torch.randn((1, 1, 8, 64), dtype=torch.float32, device="cuda") key = torch.randn((1, 1, 1024, 64), dtype=torch.float16, device="cuda") value = torch.randn((1, 1, 1024, 64), dtype=torch.float16, device="cuda") with self.assertRaisesRegex( ValueError, "Expected query, key, and value to have the same dtype" ): flex_attention(query, key, value, _identity) @supported_platform @patch.object(torch._inductor.config, "max_autotune", True) def test_max_autotune(self): def score_mod(score, b, h, m, n): return score * 2 self.run_test(score_mod) @supported_platform @patch.object(torch._inductor.config, "max_autotune", True) def test_max_autotune_with_captured(self): head_scale = torch.randn(Hq, device="cuda") batch_scale = torch.randn(B, device="cuda") tok_scale = torch.randn(S, device="cuda") q_scale = torch.randn(1, device="cuda") def bias_mod(score, batch, head, token_q, token_kv): score = score + tok_scale[token_kv] score = score + q_scale[token_q] score = score + batch_scale[batch] score = score + head_scale[head] return score self.run_test(bias_mod) @skipIfRocm @supported_platform def test_fully_masked_out_rows_0_check_gqa(self): # Ensure fully masked out rows won't cause NaNs. query = torch.randn( (B, Hq, S, D), dtype=torch.float32, device="cuda", requires_grad=True ) key = torch.randn( (B, Hkv, S, D), dtype=torch.float32, device="cuda", requires_grad=True ) value = torch.randn( (B, Hkv, S, D), dtype=torch.float32, device="cuda", requires_grad=True ) M = S // 2 def mask_mod(b, h, q, kv): return q < M block_mask = create_block_mask(mask_mod, 1, 1, S, S) flex = torch.compile(flex_attention, dynamic=False) out, lse = flex( query, key, value, block_mask=block_mask, enable_gqa=True, return_lse=True ) self.assertEqual(out[:, :, M:, :].sum(), 0) self.assertTrue((lse[:, :, M:] == -float("inf")).all()) loss = out.sum() + lse.sum() loss.backward() self.assertEqual(query.grad[:, :, M:, :].sum(), 0) @supported_platform def test_windowed_no_mask_vs_sdpa(self): score_mod = _generate_windowed(1000) attention = functools.partial(flex_attention, score_mod=score_mod) sdpa_mask = _get_windowed_sdpa_mask(8, S, 1000) sdpa_attention = functools.partial( torch.nn.functional.scaled_dot_product_attention, attn_mask=sdpa_mask ) self.run_test_with_call(attention, sdpa_attention, Q_H=16, KV_H=16, Q_S=8) @supported_platform def test_windowed_full_mask_vs_sdpa(self): def mask_mod(b, h, q, kv): return q + 1000 >= kv score_mod = _generate_windowed(1000) block_mask = create_block_mask(mask_mod, 1, 1, 8, S) attention = functools.partial( flex_attention, block_mask=block_mask, score_mod=score_mod ) sdpa_mask = _get_windowed_sdpa_mask(8, S, 1000) sdpa_attention = functools.partial( torch.nn.functional.scaled_dot_product_attention, attn_mask=sdpa_mask ) self.run_test_with_call(attention, sdpa_attention, Q_H=16, KV_H=16, Q_S=8) @supported_platform def test_windowed_partial_block_vs_sdpa(self): def mask_mod(b, h, q, kv): return q + 1000 >= kv block_mask = create_block_mask(mask_mod, 1, 1, 8, S) attention = functools.partial(flex_attention, block_mask=block_mask) sdpa_mask = _get_windowed_sdpa_mask(8, S, 1000) sdpa_attention = functools.partial( torch.nn.functional.scaled_dot_product_attention, attn_mask=sdpa_mask ) self.run_test_with_call(attention, sdpa_attention, Q_H=16, KV_H=16, Q_S=8) @supported_platform @common_utils.parametrize("dtype", test_dtypes) @common_utils.parametrize("score_mod", [_identity, _causal]) def test_logsumexp_correctness(self, dtype, score_mod): make_kv = functools.partial( torch.randn, (B, Hkv, S, D), dtype=dtype, device="cuda", requires_grad=True, ) make_q = functools.partial( torch.randn, (B, Hkv, Hq // Hkv, D), dtype=dtype, device="cuda", requires_grad=True, ) q, k, v = make_q(), make_kv(), make_kv() @torch.compile def sdpa_hop(q, k, v, score_mod): return flex_attention(q, k, v, score_mod, return_lse=True) @torch.compile(backend="aot_eager") def eager_sdpa_hop(q, k, v, score_mod): return flex_attention(q, k, v, score_mod, return_lse=True) ref_out, ref_lse = eager_sdpa_hop( q.to(torch.float64), k.to(torch.float64), v.to(torch.float64), score_mod, ) compiled_out, compiled_lse = sdpa_hop(q, k, v, score_mod) self.assertTrue(ref_lse.dtype == torch.float64) self.assertTrue(compiled_lse.dtype == torch.float32) tolerance = Tolerances(atol=2e-2, rtol=2e-2) torch.testing.assert_close( ref_out.to(dtype=torch.float32), compiled_out.to(dtype=torch.float32), atol=tolerance.atol, rtol=tolerance.rtol, ) torch.testing.assert_close( ref_lse.to(dtype=torch.float32), compiled_lse.to(dtype=torch.float32), atol=tolerance.atol, rtol=tolerance.rtol, ) @supported_platform def test_logsumexp_only_return(self): make_q = functools.partial( torch.randn, (B, Hkv, Hq // Hkv, D), dtype=torch.float32, device="cuda", requires_grad=True, ) make_kv = functools.partial( torch.randn, (B, Hkv, S, D), dtype=torch.float32, device="cuda", requires_grad=True, ) q, k, v = make_q(), make_kv(), make_kv() @torch.compile def func(q, k, v, score_mod): _, lse = flex_attention(q, k, v, score_mod, return_lse=True) lse_2 = lse * 2 return lse_2 _, code = run_and_get_code(func, q, k, v, _identity) # Ensure that we're still generating the flexattention kernel FileCheck().check_count(".run(primals_1, primals_2, primals_3", 1, True).run( code[0] ) @supported_platform def test_non_sparse_mulitple_block_size(self): def generate_causal_offset(offset: torch.Tensor): def causal_offset_mask(b, h, q_idx, kv_idx): return (offset + q_idx) >= kv_idx return causal_offset_mask def noop(score, b, h, q_idx, kv_idx): return score mod = generate_causal_offset( torch.tensor(192, device="cuda", dtype=torch.int32) ) block_mask = create_block_mask(mod, 1, 1, 1, 65) self.run_test( score_mod=None, dtype=torch.float32, block_mask=block_mask, Q_B=1, Q_H=1, Q_S=1, Q_D=16, KV_B=1, KV_H=1, KV_S=65, V_D=16, ) @supported_platform def test_do_not_trigger_dynamic_shapes_on_empty_block_mask(self): torch._dynamo.reset() H = Hq q = torch.randn(B, H, 1, D, device="cuda") for i in range(5): k = torch.randn(B, H, S + i, D, device="cuda") v = torch.randn(B, H, S + i, D, device="cuda") compiled_flex_attention = torch.compile(flex_attention) ref = flex_attention(q, k, v) res = compiled_flex_attention(q, k, v) tolerance = Tolerances(atol=2e-1, rtol=2e-1) torch.testing.assert_close( ref, res, atol=tolerance.atol, rtol=tolerance.rtol ) # Ensure no more re-compilation after the second automatic dynamic shape version. if i == 0: self.assertEqual(torch._dynamo.utils.counters["frames"]["ok"], 1) else: self.assertEqual(torch._dynamo.utils.counters["frames"]["ok"], 2) common_utils.instantiate_parametrized_tests(TestFlexDecoding) if __name__ == "__main__": from torch._inductor.test_case import run_tests run_tests()