# Owner(s): ["module: inductor"] import sys import unittest import torch import torch._inductor from torch._inductor.test_case import TestCase from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, IS_FBCODE, parametrize, ) from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA from torch.testing._internal.triton_utils import requires_cuda aten = torch.ops.aten try: try: from .test_torchinductor import check_model, check_model_cuda except ImportError: from test_torchinductor import check_model, check_model_cuda except (unittest.SkipTest, ImportError) as e: sys.stderr.write(f"{type(e)}: {e}\n") if __name__ == "__main__": sys.exit(0) raise inplace_bin_ops_under_test = [ torch._foreach_add_, torch._foreach_mul_, torch._foreach_sub_, torch._foreach_div_, ] bin_ops_under_test = [ torch._foreach_add, torch._foreach_mul, torch._foreach_sub, torch._foreach_div, torch._foreach_maximum, torch._foreach_minimum, torch._foreach_clamp_max, torch._foreach_clamp_min, aten._foreach_copy, ] un_ops_under_test = [ torch._foreach_reciprocal, torch._foreach_neg, torch._foreach_sign, torch._foreach_abs, torch._foreach_sqrt, ] compose_ops = [torch._foreach_addcdiv, torch._foreach_addcmul] all_ops = parametrize( "op", bin_ops_under_test + un_ops_under_test, name_fn=lambda f: f.__name__ ) bin_ops = parametrize("op", bin_ops_under_test, name_fn=lambda f: f.__name__) inplace_bin_ops = parametrize( "op", inplace_bin_ops_under_test, name_fn=lambda f: f.__name__ ) scalar_bin_ops = parametrize("op", bin_ops_under_test[:4], name_fn=lambda f: f.__name__) scalar_tensor_bin_ops = parametrize( "op", bin_ops_under_test[:2], name_fn=lambda f: f.__name__ ) decomp_ops = parametrize("op", compose_ops, name_fn=lambda f: f.__name__) def gen_args(op): if op in un_ops_under_test: return ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ) else: return ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ) @instantiate_parametrized_tests class ForeachTests(TestCase): check_model_cuda = check_model_cuda check_model_cpu = check_model check_kernel_count = True def setUp(self): super().setUp() torch._inductor.metrics.reset() def tearDown(self): super().tearDown() torch._inductor.metrics.reset() def _test_single_list(self, op): if op in un_ops_under_test: def fn(a0, a1): return op([a0, a1]) else: def fn(a0, a1, b0, b1): return op([a0, a1], [b0, b1]) self.check_model_cuda( fn, gen_args(op), ) def _test_single_scalar(self, op): def fn(a0, a1): return op([a0, a1], 3.3) self.check_model_cuda( fn, ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ), ) def _test_single_scalar_tensor(self, op): def fn(a0, a1): return op([a0, a1], torch.tensor(3.3, device="cuda:0")) self.check_model_cuda( fn, ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ), ) # called in test_cuda_cpp_wrapper.py @requires_cuda def test_foreach_cpp_wrapper_cuda(self): self._test_single_list(op=torch._foreach_add) @requires_cuda @all_ops def test_single_list(self, op): self._test_single_list(op) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @scalar_bin_ops def test_single_scalar(self, op): self._test_single_scalar(op) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @scalar_tensor_bin_ops def test_single_scalar_tensor(self, op): self._test_single_scalar_tensor(op) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @all_ops def test_scheduler_fusion_list(self, op): if op in un_ops_under_test: def fn(a0, a1): c = op([a0, a1]) return torch._foreach_sqrt(c) else: def fn(a0, a1, b0, b1): c = op([a0, a1], [b0, b1]) return c, torch._foreach_add([a0, a1], c) self.check_model_cuda( fn, gen_args(op), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @scalar_bin_ops def test_scheduler_fusion_scalar(self, op): def fn(a0, a1): c = op([a0, a1], 3.4) return c, torch._foreach_add([a0, a1], c) self.check_model_cuda( fn, ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @scalar_bin_ops def test_broadcasting(self, op): def fn(a0, a1, b0, b1): return op([a0, a1], [b0, b1]) fn_opt = torch._dynamo.optimize()(fn) inputs = ( torch.rand(10, 1, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(1, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ) actual = fn_opt(*inputs) expected = fn(*inputs) self.assertEqual(actual, expected) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @all_ops def test_singleton_lists(self, op): if op in un_ops_under_test: def fn(a0): return op([a0]) args = (torch.rand(10, 10, device="cuda:0"),) else: def fn(a0, b0): return op([a0], [b0]) args = ( torch.rand(10, 10, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), ) self.check_model_cuda( fn, args, ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @bin_ops def test_type_promotion(self, op): def fn(a0, a1, b0, b1): return op([a0, a1], [b0, b1]) fn_opt = torch._dynamo.optimize()(fn) max32 = torch.iinfo(torch.int32).max max64 = torch.iinfo(torch.int64).max inputs = ( torch.randint(max32, (10, 10), device="cuda:0", dtype=torch.int32), torch.randint(max32, (20, 20), device="cuda:0", dtype=torch.int32), torch.randint(max32, (10, 10), device="cuda:0", dtype=torch.int32), torch.randint(max64, (20, 20), device="cuda:0", dtype=torch.int64), ) actual = fn_opt(*inputs) expected = fn(*inputs) self.assertEqual(actual, expected) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @scalar_bin_ops def test_kernel_split_arg_limit_list(self, op): # NB: foeach_copy won't pass this test because it will dce one set of buffers def fn(a, b): return op(a, b) fn_opt = torch._dynamo.optimize()(fn) max_args = 370 max_list_len = (max_args // 3) + 1 inputs = ( [torch.rand(10, 10, device="cuda:0") for _ in range(max_list_len)], [torch.rand(10, 10, device="cuda:0") for _ in range(max_list_len)], ) actual = fn_opt(*inputs) expected = fn(*inputs) self.assertEqual(actual, expected) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) @requires_cuda @scalar_bin_ops @unittest.skip( "Triton recursion depth exceeded: https://github.com/openai/triton/issues/1763" ) def test_kernel_split_arg_limit_scalar(self, op): def fn(a): return op(a, 3.3) fn_opt = torch._dynamo.optimize()(fn) max_args = 370 max_list_len = (max_args // 2) + 1 inputs = ([torch.rand(10, 10, device="cuda:0") for _ in range(max_list_len)],) actual = fn_opt(*inputs) expected = fn(*inputs) self.assertEqual(actual, expected) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) @requires_cuda @bin_ops def test_fusion_duplicate_buffer_list(self, op): def fn(a0, a1, b0, b1): c = op([a0, a1], [b0, b1]) return op([a0, b0], [c[0], c[0]]) self.check_model_cuda( fn, ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ), reference_in_float=False, check_lowp=False, ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @all_ops def test_non_foreach_consumer_list(self, op): if op in un_ops_under_test: def fn(a0, a1): c = op([a0, a1]) return torch.mul(c[0], a0) else: def fn(a0, a1, b0, b1): c = op([a0, a1], [b0, b1]) return torch.mul(c[0], a0) self.check_model_cuda( fn, gen_args(op), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @scalar_bin_ops def test_non_foreach_consumer_scalar(self, op): def fn(a0, a1): c = op([a0, a1], 4.7) return torch.mul(c[0], a0) self.check_model_cuda( fn, ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @all_ops def test_non_foreach_producer_list(self, op): if op in un_ops_under_test: def fn(a0, a1): c0 = torch.add(a0, a0) c1 = torch.add(a1, a1) return op([c0, c1]) else: def fn(a0, a1, b0, b1): c0 = torch.add(a0, b0) c1 = torch.add(a1, b1) return op([a0, a1], [c0, c1]) self.check_model_cuda( fn, gen_args(op), reference_in_float=False, check_lowp=False ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @scalar_bin_ops def test_non_foreach_producer_scalar(self, op): def fn(a0, a1, b0, b1): c0 = torch.mul(a0, b0) c1 = torch.mul(a1, b1) return op([c0, c1], 5.6) self.check_model_cuda( fn, ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @all_ops def test_non_foreach_consumer_producer_list(self, op): if op in un_ops_under_test: def fn(a0, a1): c0 = torch.add(a0, a0) c1 = torch.mul(a1, a1) d = op([c0, c1]) e0 = torch.mul(d[0], a0) e1 = torch.mul(d[1], a1) return [e0, e1] else: def fn(a0, a1, b0, b1): c0 = torch.add(a0, b0) c1 = torch.add(a1, b1) d = op([a0, a1], [c0, c1]) e0 = torch.mul(d[0], a0) e1 = torch.mul(d[1], a1) return [e0, e1] self.check_model_cuda( fn, gen_args(op), reference_in_float=False, check_lowp=False, ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @scalar_bin_ops def test_non_foreach_consumer_producer_scalar(self, op): def fn(a0, a1, b0, b1): c0 = torch.add(a0, b0) c1 = torch.add(a1, b1) d = op([c0, c1], 5.8) e0 = torch.mul(d[0], a0) e1 = torch.mul(d[1], a1) return [e0, e1] self.check_model_cuda( fn, ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ), reference_in_float=False, check_lowp=False, ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @bin_ops @torch._dynamo.config.patch("automatic_dynamic_shapes", False) @torch._dynamo.config.patch("assume_static_by_default", False) def test_dynamic_shapes_fallback(self, op): def fn(a0, a1, b0, b1): return op([a0, a1], [b0, b1]) inputs = ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ) self.check_model_cuda(fn, inputs) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) @requires_cuda @torch._dynamo.config.patch("automatic_dynamic_shapes", False) @torch._dynamo.config.patch("assume_static_by_default", False) @torch._inductor.config.patch("combo_kernel_foreach_dynamic_shapes", True) def test_enable_dynamic_shapes_python_wrapper(self, op=torch._foreach_add): def fn(a0, a1, b0, b1): return op([a0, a1], [b0, b1]) inputs = ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ) self.check_model_cuda(fn, inputs) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @torch._dynamo.config.patch("automatic_dynamic_shapes", False) @torch._dynamo.config.patch("assume_static_by_default", False) @torch._inductor.config.patch("combo_kernel_foreach_dynamic_shapes", True) @torch._inductor.config.patch("cpp_wrapper", True) def test_enable_dynamic_shapes_cpp_wrapper_cuda(self, op=torch._foreach_add): def fn(a0, a1, b0, b1): return op([a0, a1], [b0, b1]) inputs = ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ) self.check_model_cuda(fn, inputs) @unittest.skipIf(IS_FBCODE, "cpp compile not supported in fbcode") @bin_ops def test_cpu_cpp_fallback(self, op): def fn(a0, a1, b0, b1): return op([a0, a1], [b0, b1]) inputs = ( torch.rand(10, 10, device="cpu"), torch.rand(20, 20, device="cpu"), torch.rand(10, 10, device="cpu"), torch.rand(20, 20, device="cpu"), ) self.check_model_cpu(fn, inputs) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) @requires_cuda @decomp_ops def test_decomp(self, op): def fn(a0, a1, b0, b1, c0, c1): return op([a0, a1], [b0, b1], [c0, c1], value=0.5) self.check_model_cuda( fn, ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda def test_fuse_concat(self): def fn(x1, x2, x3, w1, w2, w3): x = torch.stack([x1, x2, x3]) w = torch.stack([w1, w2, w3]) y = torch.bmm(x, w) return y x1 = torch.randn(5, 4).cuda() x2 = x1 + 1 x3 = x1 + 2 w1 = torch.randn(4, 3).cuda() w2 = w1 + 1 w3 = w1 + 2 args = (x1, x2, x3, w1, w2, w3) self.check_model_cuda(fn, args) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) @requires_cuda def test_zero_elems(self): def fn(a0, a1, b0, b1): return torch._foreach_add([a0, a1], [b0, b1]) self.check_model_cuda( fn, ( torch.rand(0, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(0, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), ), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @bin_ops def test_2d_blocking(self, op): def fn(a0, a1, b0, b1): return op([a0, a1], [b0, b1]) self.check_model_cuda( fn, ( torch.rand(10, 40, device="cuda:0"), torch.rand(10, 30, device="cuda:0"), torch.rand(40, 10, device="cuda:0").t(), torch.rand(30, 10, device="cuda:0").t(), ), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @bin_ops def test_2d_blocking_partitioning(self, op): def fn(a0, a1, b0, b1): return op([a0, a1], [b0, b1]) self.check_model_cuda( fn, ( torch.rand(30, 20, device="cuda:0"), torch.rand(40, 30, device="cuda:0"), torch.rand(30, 20, device="cuda:0"), torch.rand(30, 40, device="cuda:0").t(), ), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) @requires_cuda @bin_ops def test_2d_blocking_partitioning_elems(self, op): """2D blocking should be grouped by number of yelems""" def fn(a0, a1, a2, b0, b1, b2): return op([a0, a1, a2], [b0, b1, b2]) self.check_model_cuda( fn, ( torch.rand(10, 20, device="cuda:0"), torch.rand(30, 20, device="cuda:0"), torch.rand(10, 30, device="cuda:0"), torch.rand(20, 10, device="cuda:0").t(), torch.rand(20, 30, device="cuda:0").t(), torch.rand(30, 10, device="cuda:0").t(), ), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) @requires_cuda @bin_ops @torch._inductor.config.patch("combo_kernel_allow_mixed_sizes", 2) def test_2d_blocking_partitioning_mixed_sizes(self, op): """2D blocking with mixed sizes should group together""" def fn(a0, a1, a2, b0, b1, b2): return op([a0, a1, a2], [b0, b1, b2]) self.check_model_cuda( fn, ( torch.rand(10, 20, device="cuda:0"), torch.rand(30, 20, device="cuda:0"), torch.rand(10, 30, device="cuda:0"), torch.rand(20, 10, device="cuda:0").t(), torch.rand(20, 30, device="cuda:0").t(), torch.rand(30, 10, device="cuda:0").t(), ), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @inplace_bin_ops def test_reinplacing(self, op): def fn(a0, a1, b0, b1): op([a0, a1], [b0, b1]) return [a0, a1] inputs = ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ) self.check_model_cuda(fn, inputs, check_lowp=False) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @inplace_bin_ops def test_reinplacing_mut_before(self, op): def fn(a0, a1, b0, b1): a0.add_(torch.ones(10, 10, device="cuda:0")) op([a0, a1], [b0, b1]) return [a0, a1] inputs = ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ) self.check_model_cuda(fn, inputs, check_lowp=False) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda @inplace_bin_ops def test_reinplacing_mut_after(self, op): def fn(a0, a1, b0, b1): op([a0, a1], [b0, b1]) a0.add_(torch.ones(10, 10, device="cuda:0")) return [a0, a1] inputs = ( torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), torch.rand(10, 10, device="cuda:0"), torch.rand(20, 20, device="cuda:0"), ) self.check_model_cuda(fn, inputs, check_lowp=False) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) @requires_cuda def test_multi_device(self): def test_foreach_add(a0, a1, b0, b1): return torch._foreach_add([a0, a1], [b0, b1]) inps = [ torch.ones(10, 10, device="cuda"), torch.ones(20, 20, device="cpu"), torch.zeros(10, 10, device="cuda"), torch.zeros(20, 20, device="cpu"), ] out_eager = test_foreach_add(*inps) out_compiled = torch.compile(test_foreach_add)(*inps) self.assertEqual(out_eager, out_compiled) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) @requires_cuda def test_aliasing(self): def test_foreach_add(a0, a1, a2, b0, b1, b2): return torch._foreach_add_([a0, a1, a2], [b0, b1, b2]) input = torch.ones(10, 10, device="cuda") input2 = torch.ones(10, 10, device="cuda") inps = [ input, input.view(10, 10), input.view(10, 10), input2, input2.view(10, 10), input2.view(10, 10), ] out_eager = test_foreach_add(*inps) out_compiled = torch.compile(test_foreach_add)(*inps) self.assertEqual(out_eager, out_compiled) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 4) @requires_cuda @torch._inductor.config.patch("combo_kernel_allow_mixed_sizes", 1) def test_2d_block_no_mixed_sizes_no_mask(self): """2D blocking with no mixed sizes constant mask""" def fn(a0, a1, a2, b0, b1, b2): return torch._foreach_add([a0, a1, a2], [b0, b1, b2]) self.check_model_cuda( fn, ( torch.rand(1024, 2048, device="cuda:0"), torch.rand(2048, 2048, device="cuda:0"), torch.rand(1024, 2048, device="cuda:0"), torch.rand(2048, 1024, device="cuda:0").t(), torch.rand(2048, 2048, device="cuda:0").t(), torch.rand(2048, 1024, device="cuda:0").t(), ), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) @requires_cuda @torch._inductor.config.patch("combo_kernel_allow_mixed_sizes", 2) def test_2d_block_mixed_sizes_with_mask(self): """2D blocking with mixed sizes should have mask""" def fn(a0, a1, a2, b0, b1, b2): return torch._foreach_add([a0, a1, a2], [b0, b1, b2]) self.check_model_cuda( fn, ( torch.rand(1024, 2048, device="cuda:0"), torch.rand(2048, 2048, device="cuda:0"), torch.rand(1024, 2048, device="cuda:0"), torch.rand(2048, 1024, device="cuda:0").t(), torch.rand(2048, 2048, device="cuda:0").t(), torch.rand(2048, 1024, device="cuda:0").t(), ), ) self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) if __name__ == "__main__": from torch._inductor.test_case import run_tests if HAS_CPU or HAS_CUDA: run_tests(needs="filelock")