# Owner(s): ["module: inductor"] import unittest import torch import torch._inductor.config as inductor_config from torch._dynamo.testing import rand_strided from torch._inductor.fx_passes.pad_mm import ( get_alignment_size, get_pad_cache, get_padded_length, should_pad_common, ) from torch._inductor.test_case import run_tests, TestCase from torch._inductor.utils import fresh_inductor_cache, is_big_gpu, run_and_get_code from torch.testing import FileCheck from torch.testing._internal.inductor_utils import HAS_CUDA class PadMMTest(TestCase): def setUp(self): super().setUp() if not is_big_gpu(0): return self.skipTest("Need a big GPU to run max_autotune=True") @inductor_config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON") def test_pad_mm_dyn_m(self): M = 40 K1 = 581 K2 = 49 N = 30 class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.w = rand_strided( (K2, N), (1, K2), device="cuda", dtype=torch.float32 ) def forward(self, a): a1 = torch.narrow(a, 1, 0, K2) return torch.mm(a1, self.w) fn = Model().cuda() a = rand_strided((M, K1), (K1, 1), device="cuda", dtype=torch.float32) aligned_k = get_padded_length(K2, get_alignment_size(a)) + K2 torch._dynamo.mark_dynamic(a, 0) with unittest.mock.patch( "torch._inductor.fx_passes.pad_mm._skip_do_bench_times", True ): res1 = fn(a) compiled_fn = torch.compile(fn) res2, (code,) = run_and_get_code(compiled_fn, a) FileCheck().check(f"K = {aligned_k}").run(code) self.assertEqual(res1, res2) @inductor_config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON") def test_cat_pad_mm_dyn_m(self): M1 = 128 M2 = 40 K1 = 129 K2 = 111 N = 100 class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.w = rand_strided( (K2, N), (1, K2), device="cuda", dtype=torch.float32 ) def forward(self, a, b): c = torch.cat([a, b], dim=0) a1 = torch.narrow(c, 1, 0, K2) return torch.mm(a1, self.w) fn = Model().cuda() a = rand_strided((M1, K1), (K1, 1), device="cuda", dtype=torch.float32) b = rand_strided((M2, K1), (K1, 1), device="cuda", dtype=torch.float32) torch._dynamo.mark_dynamic(a, 0) torch._dynamo.mark_dynamic(b, 0) aligned_k = get_padded_length(K2, get_alignment_size(a)) + K2 with unittest.mock.patch( "torch._inductor.fx_passes.pad_mm._skip_do_bench_times", True ): res1 = fn(a, b) compiled_fn = torch.compile(fn) res2, (code,) = run_and_get_code(compiled_fn, a, b) FileCheck().check(f"K = {aligned_k}").run(code) self.assertEqual(res1, res2) @inductor_config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON") def test_pad_mm_dyn_n(self): M = 20 K = 81 N = 30 class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, a, b): return torch.mm(a, b) fn = Model().cuda() a = rand_strided((M, K), (K, 1), device="cuda", dtype=torch.float32) b = rand_strided((K, N), (1, K), device="cuda", dtype=torch.float32) aligned_k = get_padded_length(K, get_alignment_size(a)) + K torch._dynamo.mark_dynamic(b, 1) with unittest.mock.patch( "torch._inductor.fx_passes.pad_mm._skip_do_bench_times", True ): res1 = fn(a, b) compiled_fn = torch.compile(fn) res2, (code,) = run_and_get_code(compiled_fn, a, b) FileCheck().check(f"K = {aligned_k}").run(code) self.assertEqual(res1, res2) @inductor_config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON") def test_pad_mm_dyn_k(self): M = 21 K = 80 N = 30 class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, a, b): return torch.mm(a, b) fn = Model().cuda() a = rand_strided((M, K), (K, 1), device="cuda", dtype=torch.float32) b = rand_strided((K, N), (1, K), device="cuda", dtype=torch.float32) # TODO: Getting the alignment right requires pattern matcher to # run on newly added nodes aligned_m = get_padded_length(M, get_alignment_size(a)) + M torch._dynamo.mark_dynamic(a, 1) torch._dynamo.mark_dynamic(b, 0) with unittest.mock.patch( "torch._inductor.fx_passes.pad_mm._skip_do_bench_times", True ): res1 = fn(a, b) compiled_fn = torch.compile(fn) res2, (code,) = run_and_get_code(compiled_fn, a, b) FileCheck().check(f"M = {aligned_m}").run(code) self.assertEqual(res1, res2) def test_pad_mm_dyn_mnk(self): M = 20 K = 81 N = 30 class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, a, b): return torch.mm(a, b) fn = Model().cuda() a = rand_strided((M, K), (K, 1), device="cuda", dtype=torch.float32) b = rand_strided((K, N), (1, K), device="cuda", dtype=torch.float32) torch._dynamo.mark_dynamic(a, 0) torch._dynamo.mark_dynamic(a, 1) torch._dynamo.mark_dynamic(b, 0) torch._dynamo.mark_dynamic(b, 1) with unittest.mock.patch( "torch._inductor.fx_passes.pad_mm._skip_do_bench_times", True ): res1 = fn(a, b) compiled_fn = torch.compile(fn) res2, (code,) = run_and_get_code(compiled_fn, a, b) self.assertEqual(res1, res2) @inductor_config.patch(force_shape_pad=True) def test_zero_dim(self): def addmm(x, a, b): return torch.addmm(x, a, b) x = torch.randn(100).cuda() a = torch.randn(0, 10).cuda() b = torch.randn(10, 100).cuda() self.assertEqual(torch.compile(addmm)(x, a, b), addmm(x, a, b)) @inductor_config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON") def test_pad_bmm_dyn_b(self): B = 10 M = 128 K = 33 N = 40 class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, a, b): return torch.bmm(a, b) fn = Model().cuda() a = torch.randn(B, M, K, device="cuda", dtype=torch.float32) b = torch.randn(B, K, N, device="cuda", dtype=torch.float32) aligned_k = get_padded_length(K, get_alignment_size(a)) + K torch._dynamo.mark_dynamic(a, 0) torch._dynamo.mark_dynamic(b, 0) with unittest.mock.patch( "torch._inductor.fx_passes.pad_mm._skip_do_bench_times", True ): res1 = fn(a, b) compiled_fn = torch.compile(fn) res2, (code,) = run_and_get_code(compiled_fn, a, b) FileCheck().check(f"K = {aligned_k}").run(code) self.assertEqual(res1, res2) @inductor_config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON") def test_pad_bmm_dyn_k(self): B = 10 M = 128 K = 40 N = 41 class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, a, b): return torch.bmm(a, b) fn = Model().cuda() a = torch.randn(B, M, K, device="cuda", dtype=torch.float32) b = torch.randn(B, K, N, device="cuda", dtype=torch.float32) aligned_n = get_padded_length(N, get_alignment_size(b)) + N torch._dynamo.mark_dynamic(a, 2) torch._dynamo.mark_dynamic(b, 1) with unittest.mock.patch( "torch._inductor.fx_passes.pad_mm._skip_do_bench_times", True ): res1 = fn(a, b) compiled_fn = torch.compile(fn) res2, (code,) = run_and_get_code(compiled_fn, a, b) FileCheck().check(f"N = {aligned_n}").run(code) self.assertEqual(res1, res2) @inductor_config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON") def test_pad_bmm_dyn_bm(self): B = 10 M = 128 K = 40 N = 41 class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, a, b): return torch.bmm(a, b) fn = Model().cuda() a = torch.randn(B, M, K, device="cuda", dtype=torch.float32) b = torch.randn(B, K, N, device="cuda", dtype=torch.float32) aligned_n = get_padded_length(N, get_alignment_size(b)) + N torch._dynamo.mark_dynamic(a, 0) torch._dynamo.mark_dynamic(a, 1) torch._dynamo.mark_dynamic(b, 0) with unittest.mock.patch( "torch._inductor.fx_passes.pad_mm._skip_do_bench_times", True ): res1 = fn(a, b) compiled_fn = torch.compile(fn) res2, (code,) = run_and_get_code(compiled_fn, a, b) FileCheck().check(f"N = {aligned_n}").run(code) self.assertEqual(res1, res2) @inductor_config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON") def test_pad_addmm_dyn_m(self): M = 128 K = 33 N = 40 class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, a, b, c): return torch.addmm(a, b, c) fn = Model().cuda() a = torch.randn(M, N, device="cuda", dtype=torch.float32) b = torch.randn(M, K, device="cuda", dtype=torch.float32) c = torch.randn(K, N, device="cuda", dtype=torch.float32) aligned_k = get_padded_length(K, get_alignment_size(b)) + K torch._dynamo.mark_dynamic(a, 0) torch._dynamo.mark_dynamic(b, 0) with unittest.mock.patch( "torch._inductor.fx_passes.pad_mm._skip_do_bench_times", True ): res1 = fn(a, b, c) compiled_fn = torch.compile(fn) res2, (code,) = run_and_get_code(compiled_fn, a, b, c) FileCheck().check(f"K = {aligned_k}").run(code) self.assertEqual(res1, res2) @inductor_config.patch(max_autotune=True, max_autotune_gemm_backends="TRITON") def test_pad_addmm_dyn_mn(self): M = 128 K = 33 N = 40 class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, a, b, c): return torch.addmm(a, b, c) fn = Model().cuda() a = torch.randn(M, N, device="cuda", dtype=torch.float32) b = torch.randn(M, K, device="cuda", dtype=torch.float32) c = torch.randn(K, N, device="cuda", dtype=torch.float32) torch._dynamo.mark_dynamic(a, 0) torch._dynamo.mark_dynamic(a, 1) torch._dynamo.mark_dynamic(b, 0) torch._dynamo.mark_dynamic(c, 1) with unittest.mock.patch( "torch._inductor.fx_passes.pad_mm._skip_do_bench_times", True ): res1 = fn(a, b, c) compiled_fn = torch.compile(fn) res2, (code,) = run_and_get_code(compiled_fn, a, b, c) # no padding FileCheck().check(f"K = {K}").run(code) self.assertEqual(res1, res2) @inductor_config.patch(force_shape_pad=True) def test_pad_single_cat(self): @torch.compile() def foo(x, y): return x @ y inps = [torch.rand([5, 5], device="cuda") for _ in range(2)] out = foo(*inps) self.assertEqual(out, inps[0] @ inps[1]) @inductor_config.patch(force_shape_pad=True) @fresh_inductor_cache() def test_pad_addmm_2d_bias(self): @torch.compile() def foo(input, x, y): return torch.ops.aten.addmm(input, x, y) for a in [1, 4]: for b in [1, 6]: inps = ( torch.rand([a, b], device="cuda"), torch.rand([4, 5], device="cuda"), torch.rand([5, 6], device="cuda"), ) out = foo(*inps) out_eager = torch.ops.aten.addmm(*inps) self.assertEqual(out, out_eager) for a in [1, 6]: inps = ( torch.rand([a], device="cuda"), torch.rand([4, 5], device="cuda"), torch.rand([5, 6], device="cuda"), ) out = foo(*inps) out_eager = torch.ops.aten.addmm(*inps) self.assertEqual(out, out_eager) @inductor_config.patch(force_shape_pad=True) def test_pad_batch(self): m = 6 n = 9 k = 11 batch_size = 3 mat1 = torch.ones((batch_size, m, k), device="cuda", dtype=torch.float16) mat2 = torch.ones((batch_size, k, n), device="cuda", dtype=torch.float16) expected_alignment = get_alignment_size(mat1) assert expected_alignment == 8, "Alignment for float16 should be 8" assert should_pad_common( mat1, mat2 ), "This should pass the common padding criteria" @torch.compile() def bmm(mat1, mat2): return torch.bmm(mat1, mat2) res2, (code,) = run_and_get_code(bmm, mat1, mat2) bmm_expected_result = torch.bmm(mat1, mat2) # in call code, expect to see a single pad per input, and then we should see padded allocation for output FileCheck().check("del async_compile").check_count( ".run(", 2, exactly=True ).check("empty_strided_cuda((3, 8, 16)").run(code) assert torch.allclose( res2, bmm_expected_result ), "BMM results are not identical" @fresh_inductor_cache() def test_exclude_padding(self): @torch.compile() def mm(a, b): return a @ b mm(torch.rand([25, 25], device="cuda"), torch.rand([25, 25], device="cuda")) local_cache = get_pad_cache().get_local_cache() self.assertTrue(len(local_cache) == 2) FileCheck().check_count("exclude_pad:False", 2, exactly=True).run( repr(local_cache) ) @torch.compile() def mm(a, b): return (a + 1) @ b mm(torch.rand([25, 25], device="cuda"), torch.rand([25, 25], device="cuda")) local_cache = get_pad_cache().get_local_cache() # reuse original base timing self.assertTrue(len(local_cache) == 3) FileCheck().check_count("exclude_pad:False", 3, exactly=True).run( repr(local_cache) ) FileCheck().check_count("exclude_pad:True", 1, exactly=True).run( repr(local_cache) ) @fresh_inductor_cache() @inductor_config.patch(max_pointwise_cat_inputs=2) def test_exclude_cat_padding(self): @torch.compile() def mm(inps, b): return torch.cat(inps) @ b inp = torch.rand([2046, 2046], device="cuda") inp2 = torch.rand([2046, 2046], device="cuda") inps = inp.chunk(3) mm(inps, inp2) FileCheck().check_count("exclude_pad:False", 2, exactly=True).run( repr(get_pad_cache().get_local_cache()) ) inps = inp.chunk(2) mm(inps, inp2) FileCheck().check_count("exclude_pad:False", 3, exactly=True).run( repr(get_pad_cache().get_local_cache()) ) if __name__ == "__main__": if HAS_CUDA: run_tests()