# Owner(s): ["module: inductor"] import torch from torch import _dynamo as dynamo, _inductor as inductor from torch._inductor.test_case import run_tests, TestCase from torch._inductor.utils import gen_gm_and_inputs from torch.fx import symbolic_trace from torch.fx.experimental.proxy_tensor import make_fx from torch.testing._internal.inductor_utils import HAS_CPU class MyModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = torch.nn.Linear(10, 10) self.b = torch.nn.Linear(10, 10) self.relu = torch.nn.ReLU() def forward(self, x): x = self.relu(self.a(x)) x = torch.sigmoid(self.b(x)) return x class MyModule2(MyModule): def forward(self, x): # takes a dict of list a, b = x["key"] return {"result": super().forward(a) + b} class MyModule3(MyModule): def forward(self, x): return (super().forward(x),) class TestStandaloneInductor(TestCase): """ These test check that you can call TorchInductor directly without going through TorchDynamo. """ def test_inductor_via_fx(self): mod = MyModule3().eval() inp = torch.randn(10) correct = mod(inp) mod_opt = inductor.compile(symbolic_trace(mod), [inp]) actual = mod_opt(inp) self.assertEqual(actual, correct) def test_inductor_via_fx_tensor_return(self): mod = MyModule().eval() inp = torch.randn(10) correct = mod(inp) mod_opt = inductor.compile(symbolic_trace(mod), [inp]) actual = mod_opt(inp) self.assertEqual(actual, correct) def test_inductor_via_fx_dict_input(self): mod = MyModule2().eval() inp = {"key": [torch.randn(10), torch.randn(10)]} correct = mod(inp) mod_opt = inductor.compile(symbolic_trace(mod), [inp]) actual = mod_opt(inp) self.assertEqual(actual, correct) def test_inductor_via_make_fx(self): mod = MyModule().eval() inp = torch.randn(10) correct = mod(inp) mod_opt = inductor.compile(make_fx(mod)(inp), [inp]) actual = mod_opt(inp) self.assertEqual(actual, correct) def test_inductor_via_bare_module(self): mod = MyModule3().eval() inp = torch.randn(10) correct = mod(inp) # no FX graph at all (mod must return list/tuple in this case) mod_opt = inductor.compile(mod, [inp]) actual = mod_opt(inp) self.assertEqual(actual, correct) def test_inductor_via_export1(self): mod = MyModule3().eval() inp = torch.randn(10) correct = mod(inp) gm, guards = dynamo.export(mod, inp, aten_graph=True) mod_opt = inductor.compile(gm, [inp]) actual = mod_opt(inp) self.assertEqual(actual, correct) def test_inductor_via_export2(self): mod = MyModule2().eval() inp = {"key": [torch.randn(10), torch.randn(10)]} correct = mod(inp) gm, guards = dynamo.export(mod, inp) mod_opt = inductor.compile(gm, [inp]) actual = mod_opt(inp) self.assertEqual(actual, correct) def test_inductor_via_op_with_multiple_outputs(self): x1 = torch.randn((2, 512, 128)) x2 = [128] x3 = torch.randn(128) x4 = torch.randn((128,)) x5 = 1e-6 mod, inp = gen_gm_and_inputs( torch.ops.aten.native_layer_norm.default, (x1, x2, x3, x4, x5), {} ) mod_opt = inductor.compile(mod, inp) self.assertEqual(mod(*inp), mod_opt(*inp)) if __name__ == "__main__": if HAS_CPU: run_tests()