# Owner(s): ["module: inductor"] import atexit import contextlib import functools import os import sys import unittest from collections import defaultdict from enum import Enum from functools import partial from unittest.mock import patch import torch from torch._dispatch.python import enable_python_dispatcher from torch._inductor.test_case import run_tests, TestCase from torch._subclasses.fake_tensor import ( DataDependentOutputException, DynamicOutputShapeException, FakeTensorMode, ) from torch.testing._internal.common_cuda import SM80OrLater from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, onlyNativeDeviceTypes, OpDTypes, ops, skipCPUIf, skipCUDAIf, ) from torch.testing._internal.common_methods_invocations import op_db, skipOps from torch.testing._internal.common_utils import ( dtype_abbrs, IS_MACOS, IS_X86, skipCUDAMemoryLeakCheckIf, skipIfCrossRef, skipIfTorchDynamo, suppress_warnings, TEST_MKL, TEST_WITH_ASAN, TEST_WITH_ROCM, ) from torch.testing._internal.inductor_utils import GPU_TYPE, HAS_CPU, HAS_CUDA from torch.utils._python_dispatch import TorchDispatchMode from torch.utils._pytree import tree_map try: try: from .test_torchinductor import check_model, check_model_gpu except ImportError: from test_torchinductor import check_model, check_model_gpu except (unittest.SkipTest, ImportError) as e: sys.stderr.write(f"{type(e)}: {e}\n") if __name__ == "__main__": sys.exit(0) raise bf16 = torch.bfloat16 # not tested f64 = torch.float64 f32 = torch.float32 f16 = torch.float16 i8 = torch.int8 # not tested i16 = torch.int16 # not tested i32 = torch.int32 i64 = torch.int64 b8 = torch.bool u8 = torch.uint8 # not tested except upsampling and interpolate ops u16 = torch.uint16 # not tested u32 = torch.uint32 # not tested u64 = torch.uint64 # not tested _ops = partial( ops, dtypes=OpDTypes.supported, allowed_dtypes=[f16, f32, f64, i32, i64, b8, u8, u16, u32, u64], ) # Success forces pass; failure forces fail; skip unconditionally skips testing ExpectedTestResult = Enum("ExpectedTestResult", ("SUCCESS", "XFAILURE", "SKIP")) COLLECT_EXPECT = os.getenv("PYTORCH_COLLECT_EXPECT", "0") == "1" ALL_SAMPLES = os.getenv("PYTORCH_ALL_SAMPLES", "0") == "1" START = os.getenv("PYTORCH_TEST_RANGE_START", None) END = os.getenv("PYTORCH_TEST_RANGE_END", None) if START is not None or END is not None: assert END is not None assert START is not None START = int(START) END = int(END) assert START < END else: START = 0 END = len(op_db) seen_failed = defaultdict(set) failed_reasons = defaultdict(set) def print_seen(): expected_failures = defaultdict(list) def fmt_dtypes(dtypes): r = ", ".join(sorted(dtype_abbrs[d] for d in dtypes)) return "{" + r + "}" def sort_key(kv): k, v = kv device_type, op = k if isinstance(op, tuple): return op else: return op, "" for (device_type, op), failed_dtypes in sorted(seen_failed.items(), key=sort_key): key = device_type, op reasons = "" if failed_reasons[key]: def maybe_truncate(x, length=80): x = str(x).replace("\n", " ") idx = x.find("\\n") if idx >= 0: x = f"{x[:idx]}..." if len(x) > length: return f"{x[:length - 3]}..." return x reasons = sorted(set(map(maybe_truncate, failed_reasons[key]))) reasons = " # " + ", ".join(reasons) if failed_dtypes: def format_op(op): if isinstance(op, tuple): return f'("{op[0]}", "{op[1]}")' else: return f'"{op}"' expected_failures[device_type].append( f" {format_op(op)}: {fmt_dtypes(failed_dtypes)},{reasons}" ) for device_type in ("cpu", GPU_TYPE): expected_failures[device_type] nl = "\n" print( f""" inductor_expected_failures_single_sample[\"{device_type}\"] = {{ {nl.join(expected_failures[device_type])} }} """ ) if COLLECT_EXPECT: atexit.register(print_seen) # Note, in these skip/xfail dictionaries use a string as the key # for the default test, and a tuple of two strings for variants inductor_skips = defaultdict(dict) inductor_skips["cpu"] = { "linalg.ldl_factor": {f32, f64}, # flaky "nn.functional.cosine_embedding_loss": {b8}, # flaky ("index_reduce", "prod"): {f16}, # flaky ("index_reduce", "mean"): {f16}, # flaky } if IS_MACOS and IS_X86: inductor_skips["cpu"]["rsqrt"] = {b8, i32} inductor_skips["cpu"]["nn.functional.multi_margin_loss"] = { b8, f16, f32, f64, i32, i64, } inductor_skips["cuda"] = { # Jiterator kernel is not expected to work with inductor "jiterator_2inputs_2outputs": {b8, f16, f32, f64, i32, i64}, "jiterator_4inputs_with_extra_args": {b8, f16, f32, f64, i32, i64}, "jiterator_binary": {b8, f16, f32, f64, i32, i64}, "jiterator_binary_return_by_ref": {b8, f16, f32, f64, i32, i64}, "jiterator_unary": {b8, f16, f32, f64, i32, i64}, # flaky "nn.functional.cosine_embedding_loss": {b8}, "native_batch_norm": {f16, f32, f64}, "_native_batch_norm_legit": {f16, f32, f64}, "_batch_norm_with_update": {f16, f32, f64}, } if not SM80OrLater: inductor_skips["cuda"]["bfloat16"] = {b8, f16, f32, f64, i32, i64} if TEST_WITH_ROCM: # Tensors are not alike inductor_skips["cuda"]["logcumsumexp"] = {f32} inductor_skips["cuda"]["special.modified_bessel_i1"] = {f64} inductor_expected_failures_single_sample = defaultdict(dict) inductor_expected_failures_single_sample["cpu"] = { "_softmax_backward_data": { f16 }, # half_to_float is only valid for the CUDA implementation "_upsample_bilinear2d_aa": {f32, f64}, "cholesky": {f32, f64}, "complex": {f16}, "resize_": {b8, f16, f32, f64, i32, i64}, "resize_as_": {b8, f16, f32, f64, i32, i64}, "histc": {f16}, "multinomial": {f16, f32, f64}, "nn.functional.avg_pool1d": {i64}, "nn.functional.avg_pool2d": {i64}, "nn.functional.avg_pool3d": {i64}, "nn.functional.local_response_norm": {i64}, "nn.functional.rrelu": {f32, f64}, "nonzero_static": {b8, f16, f32, f64, i32, i64}, ("normal", "in_place"): {f16, f32, f64}, ("normal", "number_mean"): {f16, f32, f64}, "normal": {f16, f32, f64}, ("sparse.mm", "reduce"): {f32, f64, f16}, "sparse.sampled_addmm": {f32, f64}, "to_sparse": { f32, f64, }, # NYI: could not find kernel for aten.view.default at dispatch key DispatchKey.SparseCPU "view_as_complex": {f16}, } inductor_expected_failures_single_sample["cuda"] = { "_upsample_bilinear2d_aa": {f16, f32, f64}, "cholesky": {f32, f64}, "multinomial": {f16, f32, f64}, ("normal", "in_place"): {f16, f32, f64}, ("normal", "number_mean"): {f16, f32, f64}, "normal": {f16, f32, f64}, "sparse.sampled_addmm": {f32, f64}, "torch.ops.aten._flash_attention_forward": {f16}, "torch.ops.aten._efficient_attention_forward": {f16, f32}, "to_sparse": { f16, f32, f64, }, # NYI: could not find kernel for aten.view.default at dispatch key DispatchKey.SparseCUDA } # intentionally not handled intentionally_not_handled = { "resize_": {b8, f16, f32, f64, i32, i64}, "resize_as_": {b8, f16, f32, f64, i32, i64}, } # This is only fixed when this config is set # We should eventually always turn it on import torch._functorch.config as functorch_config if not functorch_config.view_replay_for_aliased_outputs: intentionally_not_handled['("as_strided", "partial_views")'] = { b8, f16, f32, f64, i32, i64, } inductor_expected_failures_single_sample["cuda"].update(intentionally_not_handled) inductor_gradient_expected_failures_single_sample = defaultdict(dict) inductor_gradient_expected_failures_single_sample["cuda"] = {} if not TEST_MKL: inductor_expected_failures_single_sample["cpu"].update({}) inductor_should_fail_with_exception = defaultdict(dict) inductor_should_fail_with_exception["cpu"] = {} inductor_should_fail_with_exception["cuda"] = {} def get_skips_and_xfails(from_dict, xfails=True): retval = set() for device, d in from_dict.items(): for op, dtypes in d.items(): if type(op) is tuple: op, variant_name = op else: variant_name = "" retval.add((op, variant_name, device, tuple(dtypes), xfails)) return retval # Note: if you get a "AssertionError: Couldn't find OpInfo for ..." error for an OpInfo you are sure # exists, you might be trying to use a test variant and you need to replace, for example, # "max.reduction_no_dim" with ("max", "reduction_no_dim") as the key of one of these dictionaries test_skips_or_fails = ( get_skips_and_xfails(inductor_skips, xfails=False) | get_skips_and_xfails(inductor_expected_failures_single_sample, xfails=True) | get_skips_and_xfails( inductor_gradient_expected_failures_single_sample, xfails=True ) ) def wrapper_noop_set_seed(op, *args, **kwargs): return op(*args, **kwargs) torch.testing._internal.common_methods_invocations.wrapper_set_seed = ( wrapper_noop_set_seed ) # key can be either op_name, or (op_name, deivce_type), or (op_name, device_type, dtype) inductor_override_kwargs = { # the return value of empty is undefined "empty": {"assert_equal": False}, "empty_permuted": {"assert_equal": False}, "empty_like": {"assert_equal": False}, "new_empty": {"assert_equal": False}, "empty_strided": {"assert_equal": False}, "new_empty_strided": {"assert_equal": False}, "randn": {"assert_equal": False}, ("cross", "cuda", f16): {"reference_in_float": True}, ("linalg.cross", "cuda", f16): {"reference_in_float": True}, ("addr", "cuda", f16): {"reference_in_float": True}, ("baddbmm", "cuda", f16): {"atol": 2e-3, "rtol": 0.002}, # decomp affects accuracy ("angle", "cuda", f64): {"reference_in_float": True}, ("asin", "cuda", f16): {"reference_in_float": True}, ("atanh", "cuda", f16): {"reference_in_float": True}, ("cauchy", "cuda"): {"reference_in_float": True}, ("cummax", "cuda", f16): {"atol": 5e-4, "rtol": 0.002}, ("cumsum", "cuda", f16): {"reference_in_float": True}, ("cumprod", "cuda"): {"reference_in_float": True, "atol": 7e-5, "rtol": 0.002}, ("logcumsumexp", "cuda"): {"grad_atol": 8e-4, "grad_rtol": 0.001}, ("exponential", "cuda"): {"reference_in_float": True}, ("geometric", "cuda"): {"reference_in_float": True}, ("kron", "cuda", f16): {"reference_in_float": True}, ("log_normal", "cuda"): {"reference_in_float": True}, ("masked.softmin", "cuda", f16): {"atol": 1e-4, "rtol": 0.01}, ("nn.functional.batch_norm", "cuda", f16): {"reference_in_float": True}, ("nn.functional.batch_norm.without_cudnn", "cuda", f16): { "reference_in_float": True }, ("nn.functional.cosine_similarity", "cuda", f16): {"reference_in_float": True}, ("nn.functional.instance_norm", "cuda", f16): {"reference_in_float": True}, ("nn.functional.local_response_norm", "cuda", f16): {"reference_in_float": True}, ("nn.functional.normalize", "cuda", f16): {"atol": 1e-3, "rtol": 0.05}, ("nn.functional.rms_norm", "cuda", f16): {"reference_in_float": True}, ("nn.functional.soft_margin_loss", "cuda", f16): {"reference_in_float": True}, ("nn.functional.softmin", "cuda", f16): {"atol": 1e-4, "rtol": 0.01}, ("nn.functional.softsign", "cuda", f16): {"reference_in_float": True}, ("nn.functional.tanhshrink", "cuda", f16): {"atol": 3e-4, "rtol": 0.001}, ("nn.functional.multilabel_soft_margin_loss", "cpu", f16): { "atol": 3e-4, "rtol": 0.002, }, ("outer", "cuda", f16): {"reference_in_float": True}, ("round.decimals_3", "cuda", f16): {"reference_in_float": True}, ("nn.functional.triplet_margin_loss", "cuda", f16): {"atol": 1e-4, "rtol": 0.02}, ("nn.functional.triplet_margin_with_distance_loss", "cuda", f16): { "atol": 1e-4, "rtol": 0.02, }, ("sinc", "cuda", f16): {"atol": 0.008, "rtol": 0.002}, ("torch.ops.aten._safe_softmax.default", "cuda", f16): {"atol": 5e-4, "rtol": 0.02}, ("softmax", "cpu", f16): {"atol": 1e-4, "rtol": 0.02}, ("softmax", "cuda", f16): {"atol": 1e-4, "rtol": 0.02}, ("_softmax_backward_data", "cuda", f16): {"atol": 0.008, "rtol": 0.002}, ("special.log_ndtr", "cuda", f64): {"atol": 1e-6, "rtol": 1e-5}, ("polygamma.polygamma_n_0", "cpu", f32): {"atol": 1e-3, "rtol": 1e-4}, ("polygamma.polygamma_n_1", "cpu", f32): {"atol": 1e-3, "rtol": 1e-4}, ("polygamma.polygamma_n_2", "cpu", f32): {"atol": 1e-3, "rtol": 1e-4}, ("polygamma.polygamma_n_3", "cpu", f32): {"atol": 1e-3, "rtol": 1e-4}, ("polygamma.polygamma_n_4", "cpu", f32): {"atol": 1e-3, "rtol": 1e-4}, ("special.polygamma.special_polygamma_n_0", "cpu", f32): { "atol": 1e-3, "rtol": 1e-4, }, ("std_mean.unbiased", "cuda", f16): {"reference_in_float": True}, ("uniform", "cuda"): {"reference_in_float": True}, ("_unsafe_masked_index_put_accumulate", "cuda", f16): {"atol": 1e-4, "rtol": 0.01}, ("_unsafe_masked_index_put_accumulate", "cpu", f16): {"atol": 1e-4, "rtol": 0.01}, # Following tests are failing with strict comparision but atol=1 is acceptable due roundings errors ("nn.functional.interpolate.bilinear", "cpu", u8): {"atol": 1, "rtol": 0}, ("nn.functional.upsample_bilinear", "cpu", u8): {"atol": 1, "rtol": 0}, ("nn.functional.interpolate.bicubic", "cpu", u8): {"atol": 1, "rtol": 0}, # High atol due to precision loss ("nn.functional.interpolate.bilinear", "cuda", f64): {"atol": 5e-4, "rtol": 0}, ("nn.functional.upsample_bilinear", "cuda", f64): {"atol": 5e-4, "rtol": 0}, ("nn.functional.interpolate.bicubic", "cpu", f32): {"atol": 5e-3, "rtol": 0}, ("nn.functional.interpolate.bicubic", "cuda", f64): {"atol": 1e-3, "rtol": 0}, # Unreasonably high atol requirement: ("index_reduce.mean", "cuda", f16): {"check_gradient": False}, ("index_reduce.mean", "cuda", f32): {"check_gradient": False}, ("index_reduce.mean", "cuda", f64): {"check_gradient": False}, # Gradient contains non-finite entries: ("index_reduce.amin", "cuda", f64): {"check_gradient": False}, ("index_reduce.amin", "cuda", f32): {"check_gradient": False}, ("index_reduce.amin", "cuda", f16): {"check_gradient": False}, ("index_reduce.amax", "cuda", f64): {"check_gradient": False}, ("index_reduce.amax", "cuda", f32): {"check_gradient": False}, ("index_reduce.amax", "cuda", f16): {"check_gradient": False}, ("tanh", "cuda", f16): {"atol": 1e-4, "rtol": 1e-2}, } # Test with one sample only for following ops inductor_one_sample = { "_segment_reduce.lengths": {f16}, "_segment_reduce.offsets": {f16}, "addmv": {f16}, "as_strided.partial_views": {f16}, "corrcoef": {f16}, "diff": {f16}, "einsum": {f16, i32}, "gradient": {f16}, "histogram": {f32, f64}, "histogramdd": {f32, f64}, "index_put": {f16, f32, f64}, "linalg.eig": {f32, f64}, "linspace": {f16, i32, i64}, "linspace.tensor_overload": {f16, f32, f64, i32, i64}, "logspace": {f16}, "logspace.tensor_overload": {f16, f32, f64, i32, i64}, "masked_logsumexp": {i64}, "max_pool2d_with_indices_backward": {f16, f32, f64}, "new_empty_strided": {f16}, "nn.functional.adaptive_avg_pool3d": {f16}, "nn.functional.adaptive_max_pool1d": {f16, f32}, "nn.functional.adaptive_max_pool2d": {f16, f32}, "nn.functional.bilinear": {f16}, "nn.functional.conv_transpose1d": {f16}, "nn.functional.conv_transpose2d": {f16}, "nn.functional.conv_transpose3d": {f16}, "nn.functional.cosine_similarity": {f16}, "nn.functional.cross_entropy": {f16, f32, f64}, "nn.functional.gaussian_nll_loss": {f16}, "nn.functional.grid_sample": {f32, f64}, "nn.functional.interpolate.area": {f16}, "nn.functional.nll_loss": {f16, f32, f64}, "normal": {f16, f32, f64}, "put": {f16, f32, f64}, "take": {b8, f16, f32, f64, i32, i64}, ("__rdiv__", "cuda"): {f16}, ("__rmod__", "cuda"): {f16, i64}, ("__rmul__", "cuda"): {f16}, ("__rpow__", "cuda"): {f16}, ("_unsafe_masked_index", "cuda"): {f16}, ("_unsafe_masked_index_put_accumulate", "cuda"): {f16}, ("addcdiv", "cuda"): {f16}, ("addcmul", "cuda"): {f16}, ("atan2", "cuda"): {f16}, ("cumsum", "cuda"): {f16}, ("cumulative_trapezoid", "cuda"): {f16}, ("dist", "cuda"): {f16}, ("div.no_rounding_mode", "cuda"): {f16}, ("fmod", "cuda"): {f16}, ("grid_sampler_2d", "cuda"): {f16}, ("index_fill", "cuda"): {f16, f32, f64}, ("ldexp", "cuda"): {f16}, ("lerp", "cuda"): {f16}, ("linalg.householder_product", "cuda"): {f32}, ("linalg.matrix_norm", "cuda"): {f16}, ("linalg.vector_norm", "cuda"): {f16}, ("logspace", "cuda"): {i32, i64}, ("masked.cumsum", "cuda"): {f16}, ("masked.logsumexp", "cuda"): {f16}, ("masked.mean", "cuda"): {b8}, ("masked.normalize", "cuda"): {f16}, ("masked.prod", "cuda"): {f16}, ("masked.std", "cuda"): {f16}, ("masked.var", "cuda"): {f16}, ("mul", "cuda"): {f16}, ("nn.functional.alpha_dropout", "cuda"): {f16, f32, f64}, ("nn.functional.avg_pool1d", "cuda"): {f16, f32, f64}, ("nn.functional.avg_pool2d", "cuda"): {f16, f32, f64}, ("nn.functional.avg_pool3d", "cuda"): {f16, f32, f64}, ("nn.functional.binary_cross_entropy", "cuda"): {f16}, ("nn.functional.binary_cross_entropy_with_logits", "cuda"): {f16}, ("nn.functional.conv2d", "cuda"): {f16}, ("nn.functional.cosine_embedding_loss", "cuda"): {f16}, ("nn.functional.dropout2d", "cuda"): {f16, f32, f64}, ("nn.functional.dropout3d", "cuda"): {f16, f32, f64}, ("nn.functional.dropout", "cuda"): {f16, f32, f64}, ("nn.functional.feature_alpha_dropout.with_train", "cuda"): {f16, f32, f64}, ("nn.functional.fractional_max_pool2d", "cuda"): {f16, f32, f64}, ("nn.functional.fractional_max_pool3d", "cuda"): {f16, f32, f64}, ("nn.functional.grid_sample", "cuda"): {f16}, ("nn.functional.group_norm", "cuda"): {f16}, ("nn.functional.hinge_embedding_loss", "cuda"): {f16}, # Enabling all tests for this test fails randomly # See https://github.com/pytorch/pytorch/issues/129238 ("nn.functional.huber_loss", "cuda"): {f16}, ("nn.functional.interpolate.bicubic", "cuda"): {f16}, ("nn.functional.interpolate.bilinear", "cuda"): {f16}, ("nn.functional.interpolate.trilinear", "cuda"): {f16}, ("nn.functional.kl_div", "cuda"): {f16}, ("nn.functional.margin_ranking_loss", "cuda"): {f16}, ("nn.functional.max_pool1d", "cuda"): {f16, f32, f64}, ("nn.functional.max_pool3d", "cuda"): {f16}, ("nn.functional.mse_loss", "cuda"): {f16}, ("nn.functional.multi_margin_loss", "cuda"): {f16}, ("nn.functional.multilabel_margin_loss", "cuda"): {f16}, ("nn.functional.multilabel_soft_margin_loss", "cuda"): {f16}, ("nn.functional.normalize", "cuda"): {f16}, ("nn.functional.pad.replicate", "cuda"): {f16, f32, f64}, ("nn.functional.pad.reflect", "cuda"): {f16}, ("nn.functional.pairwise_distance", "cuda"): {f16}, ("nn.functional.poisson_nll_loss", "cuda"): {f16}, ("nn.functional.rms_norm", "cuda"): {f16}, ("norm", "cuda"): {f16}, ("pow", "cuda"): {f16}, ("prod", "cuda"): {f16}, ("scatter_reduce.amax", "cuda"): {f16, f32, f64}, ("scatter_reduce.amin", "cuda"): {f16, f32, f64}, ("scatter_reduce.mean", "cuda"): {f16, f32, f64}, ("special.xlog1py", "cuda"): {f16}, ("std", "cuda"): {f16}, ("std_mean", "cuda"): {f16}, ("svd_lowrank", "cuda"): {f32, f64}, ("trapezoid", "cuda"): {f16}, ("trapz", "cuda"): {f16}, ("true_divide", "cuda"): {f16}, ("var", "cuda"): {f16}, ("var_mean", "cuda"): {f16}, ("xlogy", "cuda"): {f16}, } def collection_decorator(fn): @functools.wraps(fn) def inner(self, device, dtype, op): try: fn(self, device, dtype, op) except Exception as e: if COLLECT_EXPECT: variant = op.variant_test_name op_key = op.name if not variant else (op.name, variant) device_type = torch.device(device).type # failed_reasons[device_type, op_key].add(repr(e)) seen_failed[device_type, op_key].add(dtype) raise e return inner class TestInductorOpInfo(TestCase): def tearDown(self): torch._dynamo.reset() check_model = check_model check_model_gpu = check_model_gpu @onlyNativeDeviceTypes @suppress_warnings @skipCUDAMemoryLeakCheckIf( True ) # inductor kernels failing this test intermittently @skipCUDAIf(not HAS_CUDA, "Skipped! Triton not found") @skipCPUIf(not HAS_CPU, "Skipped! Supported CPU compiler not found") @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN") @skipIfTorchDynamo("Test uses dynamo already") @skipIfCrossRef @_ops(op_db[START:END]) @skipOps("TestInductorOpInfo", "test_comprehensive", test_skips_or_fails) @patch("torch._dynamo.config.raise_on_unsafe_aot_autograd", True) @torch._inductor.config.patch( {"implicit_fallbacks": False, "triton.autotune_pointwise": False} ) @collection_decorator def test_comprehensive(self, device, dtype, op): device_type = torch.device(device).type assert device_type in (GPU_TYPE, "cpu") torch._dynamo.reset() with torch.no_grad(): # TODO: should we move empty_cache to the common device interface if device_type == "cuda": torch.cuda.empty_cache() op_name = op.name if op.variant_test_name: op_name += f".{op.variant_test_name}" # Skip dtype=torch.uint8 for all ops except upsample and interpolate: allowed_dtypes = [f16, f32, f64, i32, i64, b8] if op_name not in ( "nn.functional.interpolate.bilinear", "nn.functional.interpolate.bicubic", "nn.functional.upsample_bilinear", "nn.functional.upsample_nearest", ): if dtype not in allowed_dtypes: raise unittest.SkipTest("Skipped!") # with open("test_output.txt", "a") as f: # print(f"CONSIDERING OP {op_name} on {device_type} with {dtype} | # {inductor_skips[device_type].get(op_name, set())}", flush=True, file=f) # print(f"CONSIDERING OP {op_name} on {device_type} with {dtype} | # {inductor_skips[device_type].get(op_name, set())}", flush=True) if dtype in inductor_skips[device_type].get(op_name, set()): test_expect = ExpectedTestResult.SKIP # with open("test_output.txt", "a") as f: # print(f"SKIPPING OP {op_name} on {device_type}", flush=True, file=f) # print(f"SKIPPING OP {op_name} on {device_type}", flush=True) elif dtype in inductor_expected_failures_single_sample[device_type].get( op_name, set() ) or dtype in inductor_gradient_expected_failures_single_sample[ device_type ].get( op_name, set() ): test_expect = ExpectedTestResult.XFAILURE else: test_expect = ExpectedTestResult.SUCCESS overridden_kwargs = {} if op_name in inductor_override_kwargs: overridden_kwargs = inductor_override_kwargs[op_name] elif (op_name, device_type) in inductor_override_kwargs: overridden_kwargs = inductor_override_kwargs[(op_name, device_type)] elif (op_name, device_type, dtype) in inductor_override_kwargs: overridden_kwargs = inductor_override_kwargs[(op_name, device_type, dtype)] func = op.get_op() def fn(*args, **kwargs): return func(*args, **kwargs) requires_grad = ( op.supports_autograd and dtype in op.supported_backward_dtypes(device_type) # TODO: OpInfo really ought to error out for this case, but it's # not exercised in test_ops_gradients atm. The problem is not # complex32 per-se (which is supported by data movement only ops) # but that when we do backwards we expect other ops like add to work and not dtype == torch.complex32 ) samples = op.sample_inputs(device, dtype, requires_grad=requires_grad) if ( dtype in inductor_one_sample.get(op_name, {}) or dtype in inductor_one_sample.get((op_name, device_type), {}) ) and not ALL_SAMPLES: if isinstance(samples, (list, tuple)): samples = [samples[0]] else: samples = [next(samples)] class HasRngOp(TorchDispatchMode): def __init__(self) -> None: super().__init__() self.has_rng_op = False def __torch_dispatch__(self, func, types, args, kwargs=None): kwargs = kwargs if kwargs else {} if torch.Tag.nondeterministic_seeded in func.tags: self.has_rng_op = True return func(*args, **kwargs) def do_nopython_and_has_rng(fn, args, kwargs): try: mode = FakeTensorMode() def map_to_fake(e): if isinstance(e, torch.Tensor): return mode.from_tensor(e) else: return e args, kwargs = tree_map(map_to_fake, (args, kwargs)) with HasRngOp() as rng_mode, mode: with enable_python_dispatcher(): fn(*args, **kwargs) except (DataDependentOutputException, DynamicOutputShapeException): return False, rng_mode.has_rng_op return True, rng_mode.has_rng_op def get_contexts(has_rng_op): if has_rng_op: # TODO - enable this, running into errors return ( # ( # lambda: torch._inductor.config.patch( # {"fallback_random": True, "implicit_fallbacks": True} # ), # {"assert_equal": True}, # ), ( contextlib.nullcontext, {"assert_equal": False}, ), ) return ((contextlib.nullcontext, {}),) try: def _get_tolerances(dtype): _custom_tolerances = { torch.float32: (1.3e-5, 1.5e-5), } if dtype in _custom_tolerances: return _custom_tolerances[dtype] else: return None, None for sample_input in samples: args = [sample_input.input] + list(sample_input.args) kwargs = sample_input.kwargs # UNCOMMENT TO DEBUG SEGFAULTS # with open("test_output.txt", "a") as f: # print(f"RUNNING OP {op_name} on {device_type} with {dtype}", flush=True, file=f) # print(f"RUNNING OP {op_name} on {device_type} with {dtype}", flush=True) rtol, atol = _get_tolerances(dtype) if device_type == GPU_TYPE: # opinfo test case have already place the input on the correct device # so we don't need do additional copy by setting copy_to_gpu=False no_python, has_rng_op = do_nopython_and_has_rng(fn, args, kwargs) for context_fn, kwarg_overrides in get_contexts(has_rng_op): with context_fn(): adjusted_kwargs = { "check_lowp": False, "nopython": no_python, "copy_to_gpu": False, "reference_in_float": False, "check_gradient": requires_grad, "check_has_compiled": no_python, "output_process_fn_grad": sample_input.output_process_fn_grad, "atol": atol, "rtol": rtol, } adjusted_kwargs.update(overridden_kwargs) adjusted_kwargs.update(kwarg_overrides) self.check_model_gpu( fn, args, kwargs, **adjusted_kwargs, ) elif device_type == "cpu": no_python, has_rng_op = do_nopython_and_has_rng(fn, args, kwargs) for context_fn, kwarg_overrides in get_contexts(has_rng_op): with context_fn(): adjusted_kwargs = { "check_lowp": False, "nopython": no_python, "check_has_compiled": no_python, # skip checking gradient on CPU for now "check_gradient": False, "atol": atol, "rtol": rtol, } adjusted_kwargs.update(overridden_kwargs) adjusted_kwargs.update(kwarg_overrides) self.check_model( fn, args, kwargs, **adjusted_kwargs, ) except Exception as e: known_failure = False if dtype in inductor_should_fail_with_exception[device_type].get( op_name, set() ): failure = inductor_should_fail_with_exception[device_type][op_name][ dtype ] if failure in str(e): known_failure = True if not known_failure: raise e # with open("test_output.txt", "a") as f: # print(f"SUCCEEDED OP {op_name} on {device_type} with {dtype}", flush=True, file=f) instantiate_device_type_tests(TestInductorOpInfo, globals()) if __name__ == "__main__": run_tests()