from typing import Union import torch class TestVersionedDivTensorExampleV7(torch.nn.Module): def forward(self, a, b): result_0 = a / b result_1 = torch.div(a, b) result_2 = a.div(b) return result_0, result_1, result_2 class TestVersionedLinspaceV7(torch.nn.Module): def forward(self, a: Union[int, float, complex], b: Union[int, float, complex]): c = torch.linspace(a, b, steps=5) d = torch.linspace(a, b) return c, d class TestVersionedLinspaceOutV7(torch.nn.Module): def forward( self, a: Union[int, float, complex], b: Union[int, float, complex], out: torch.Tensor, ): return torch.linspace(a, b, out=out) class TestVersionedLogspaceV8(torch.nn.Module): def forward(self, a: Union[int, float, complex], b: Union[int, float, complex]): c = torch.logspace(a, b, steps=5) d = torch.logspace(a, b) return c, d class TestVersionedLogspaceOutV8(torch.nn.Module): def forward( self, a: Union[int, float, complex], b: Union[int, float, complex], out: torch.Tensor, ): return torch.logspace(a, b, out=out) class TestVersionedGeluV9(torch.nn.Module): def forward(self, x): return torch._C._nn.gelu(x) class TestVersionedGeluOutV9(torch.nn.Module): def forward(self, x): out = torch.zeros_like(x) return torch._C._nn.gelu(x, out=out) class TestVersionedRandomV10(torch.nn.Module): def forward(self, x): out = torch.zeros_like(x) return out.random_(0, 10) class TestVersionedRandomFuncV10(torch.nn.Module): def forward(self, x): out = torch.zeros_like(x) return out.random(0, 10) class TestVersionedRandomOutV10(torch.nn.Module): def forward(self, x): x = torch.zeros_like(x) out = torch.zeros_like(x) x.random(0, 10, out=out) return out