import torch import torch.nn as nn import torch.nn.init as init class Fire(nn.Module): def __init__(self, inplanes, squeeze_planes, expand1x1_planes, expand3x3_planes): super().__init__() self.inplanes = inplanes self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1) self.squeeze_activation = nn.ReLU(inplace=True) self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes, kernel_size=1) self.expand1x1_activation = nn.ReLU(inplace=True) self.expand3x3 = nn.Conv2d( squeeze_planes, expand3x3_planes, kernel_size=3, padding=1 ) self.expand3x3_activation = nn.ReLU(inplace=True) def forward(self, x): x = self.squeeze_activation(self.squeeze(x)) return torch.cat( [ self.expand1x1_activation(self.expand1x1(x)), self.expand3x3_activation(self.expand3x3(x)), ], 1, ) class SqueezeNet(nn.Module): def __init__(self, version=1.0, num_classes=1000, ceil_mode=False): super().__init__() if version not in [1.0, 1.1]: raise ValueError( f"Unsupported SqueezeNet version {version}:1.0 or 1.1 expected" ) self.num_classes = num_classes if version == 1.0: self.features = nn.Sequential( nn.Conv2d(3, 96, kernel_size=7, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=ceil_mode), Fire(96, 16, 64, 64), Fire(128, 16, 64, 64), Fire(128, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=ceil_mode), Fire(256, 32, 128, 128), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=ceil_mode), Fire(512, 64, 256, 256), ) else: self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=ceil_mode), Fire(64, 16, 64, 64), Fire(128, 16, 64, 64), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=ceil_mode), Fire(128, 32, 128, 128), Fire(256, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=ceil_mode), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), Fire(512, 64, 256, 256), ) # Final convolution is initialized differently from the rest final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1) self.classifier = nn.Sequential( nn.Dropout(p=0.5), final_conv, nn.ReLU(inplace=True), nn.AvgPool2d(13) ) for m in self.modules(): if isinstance(m, nn.Conv2d): if m is final_conv: init.normal_(m.weight.data, mean=0.0, std=0.01) else: init.kaiming_uniform_(m.weight.data) if m.bias is not None: m.bias.data.zero_() def forward(self, x): x = self.features(x) x = self.classifier(x) return x.view(x.size(0), self.num_classes)