# Owner(s): ["module: onnx"] from __future__ import annotations import onnx import onnx.inliner import pytorch_test_common import torch from torch.testing._internal import common_utils def assert_op_in_onnx_model(model: onnx.ModelProto, op_type: str): inlined = onnx.inliner.inline_local_functions(model) for node in inlined.graph.node: if node.op_type == op_type: return raise AssertionError(f"Op {op_type} not found in model") class TestDynamoExportDecompSkip(pytorch_test_common.ExportTestCase): def test_upsample_bilinear2d(self): class TestModel(torch.nn.Module): def __init__(self) -> None: super().__init__() self.upsample = torch.nn.Upsample(scale_factor=2, mode="bilinear") def forward(self, x): return self.upsample(x) onnx_program = torch.onnx.dynamo_export(TestModel(), torch.randn(1, 1, 2, 2)) # If decomposition is skipped, the model will contain a Resize op instead of fine grained subgraph. assert_op_in_onnx_model(onnx_program.model_proto, "Resize") def test_upsample_bilinear2d_output_size(self): def func(x: torch.Tensor): return torch.nn.functional.interpolate(x, size=(4, 4), mode="bilinear") onnx_program = torch.onnx.dynamo_export(func, torch.randn(1, 1, 2, 2)) # If decomposition is skipped, the model will contain a Resize op instead of fine grained subgraph. assert_op_in_onnx_model(onnx_program.model_proto, "Resize") def test_upsample_trilinear3d(self): class TestModel(torch.nn.Module): def __init__(self) -> None: super().__init__() self.upsample = torch.nn.Upsample(scale_factor=2, mode="trilinear") def forward(self, x): return self.upsample(x) onnx_program = torch.onnx.dynamo_export(TestModel(), torch.randn(1, 1, 2, 2, 3)) # If decomposition is skipped, the model will contain a Resize op instead of fine grained subgraph. assert_op_in_onnx_model(onnx_program.model_proto, "Resize") def test_upsample_trilinear3d_output_size(self): def func(x: torch.Tensor): return torch.nn.functional.interpolate(x, size=(4, 4, 4), mode="trilinear") onnx_program = torch.onnx.dynamo_export(func, torch.randn(1, 1, 2, 2, 3)) # If decomposition is skipped, the model will contain a Resize op instead of fine grained subgraph. assert_op_in_onnx_model(onnx_program.model_proto, "Resize") def test_instance_norm(self): class TestModel(torch.nn.Module): def forward(self, x): return torch.nn.functional.instance_norm(x) onnx_program = torch.onnx.dynamo_export(TestModel(), torch.randn(1, 1, 2, 2)) # If decomposition is skipped, the model will contain an InstanceNormalization op # instead of BatchNormalization op w/ training=True. assert_op_in_onnx_model(onnx_program.model_proto, "InstanceNormalization") if __name__ == "__main__": common_utils.run_tests()