# Owner(s): ["oncall: package/deploy"] import torch class TestNnModule(torch.nn.Module): def __init__(self, nz=6, ngf=9, nc=3): super().__init__() self.main = torch.nn.Sequential( # input is Z, going into a convolution torch.nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), torch.nn.BatchNorm2d(ngf * 8), torch.nn.ReLU(True), # state size. (ngf*8) x 4 x 4 torch.nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), torch.nn.BatchNorm2d(ngf * 4), torch.nn.ReLU(True), # state size. (ngf*4) x 8 x 8 torch.nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), torch.nn.BatchNorm2d(ngf * 2), torch.nn.ReLU(True), # state size. (ngf*2) x 16 x 16 torch.nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), torch.nn.BatchNorm2d(ngf), torch.nn.ReLU(True), # state size. (ngf) x 32 x 32 torch.nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), torch.nn.Tanh() # state size. (nc) x 64 x 64 ) def forward(self, input): return self.main(input)