# Owner(s): ["module: meta tensors"] import contextlib import copy import dataclasses import inspect import itertools import pickle import unittest import weakref from unittest.mock import patch import numpy as np import torch import torch._dynamo import torch._functorch.config import torch._prims as prims import torch.testing._internal.optests as optests import torch.utils._pytree as pytree from torch import distributed as dist from torch._C._functorch import _add_batch_dim, get_unwrapped, is_batchedtensor from torch._dynamo.testing import make_test_cls_with_patches, rand_strided from torch._guards import tracing, TracingContext from torch._subclasses.fake_tensor import ( DynamicOutputShapeException, extract_tensor_metadata, FakeTensor, FakeTensorConverter, FakeTensorMode, unset_fake_temporarily, UnsupportedOperatorException, _CacheKeyState ) from torch.fx.experimental.proxy_tensor import make_fx from torch.fx.experimental.symbolic_shapes import ( DimDynamic, free_symbols, ShapeEnv, ShapeEnvSettings, StatelessSymbolicContext, statically_known_true, ) from torch.fx.passes.fake_tensor_prop import FakeTensorProp from torch.testing import FileCheck from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_FLASH_ATTENTION from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, OpDTypes, ops, ) from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, run_tests, skipIfCrossRef, skipIfRocm, skipIfTorchDynamo, TemporaryFileName, TEST_WITH_TORCHDYNAMO, TestCase, ) from torch.testing._internal.inductor_utils import GPU_TYPE from torch.testing._internal.custom_op_db import custom_op_db from torch.testing._internal.jit_utils import RUN_CUDA from torch.utils._mode_utils import no_dispatch from torch.utils._python_dispatch import TorchDispatchMode aten = torch.ops.aten torch._dynamo.config.fake_tensor_cache_enabled = True torch._dynamo.config.fake_tensor_cache_crosscheck_enabled = True def expectedFailurePropagateRealTensors(fn): fn._expected_failure_propagate_real_tensors = True return fn class FakeTensorTest(TestCase): def checkType(self, t, device_str, size): self.assertTrue(isinstance(t, FakeTensor)) self.assertEqual(t.device.type, device_str) self.assertEqual(list(t.size()), size) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_cuda_initialized(self): # doesnt error with FakeTensorMode(): p = torch.randn(4, 2, requires_grad=True, device="cuda") x = torch.randn(8, 4, device="cuda") y = torch.mm(x, p).square().sum() y.backward() def test_basic(self): x = torch.empty(2, 2, device="cpu") y = torch.empty(4, 2, 2, device="cpu") with FakeTensorMode() as mode: x = mode.from_tensor(x) y = mode.from_tensor(y) z = x + y self.assertEqual(z.shape, (4, 2, 2)) self.assertEqual(z.device, torch.device("cpu")) self.assertTrue(isinstance(z, FakeTensor)) def test_custom_op_fallback(self): from torch.library import impl, Library try: test_lib = Library("my_test_op", "DEF") # noqa: TOR901 test_lib.define("foo(Tensor self) -> Tensor") @impl(test_lib, "foo", "CPU") def foo_impl(self): return self.cos() x = torch.empty(2, 2, device="cpu") with self.assertRaisesRegex( UnsupportedOperatorException, "my_test_op.foo.default" ): with FakeTensorMode(allow_fallback_kernels=True) as mode: x = mode.from_tensor(x) torch.ops.my_test_op.foo(x) finally: test_lib._destroy() def test_parameter_instantiation(self): with FakeTensorMode(): x = torch.rand([4]) y = torch.nn.parameter.Parameter(x) self.assertTrue(isinstance(y, torch.nn.Parameter)) @unittest.skipIf(not dist.is_available(), "requires distributed") def test_fsdp_flat_param(self): from torch.distributed.fsdp._flat_param import FlatParameter with FakeTensorMode() as m: data = torch.randn(2, 2) param = FlatParameter(data, requires_grad=True) self.assertIsInstance(param, FlatParameter) self.assertIsInstance(param, torch.nn.Parameter) self.assertIsInstance(param, FakeTensor) def test_non_parameter_grad(self): mode = FakeTensorMode() t = torch.rand([4], requires_grad=True) fake_t = mode.from_tensor(t) self.assertEqual(fake_t.requires_grad, t.requires_grad) @unittest.skipIf( TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile" ) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_index_cuda_with_cpu(self): with FakeTensorMode(): x = torch.rand([2048], device="cuda") out = x[torch.zeros([36], dtype=torch.int64)] self.checkType(out, "cuda", [36]) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_shape_take_not_device(self): with FakeTensorMode(): x = torch.empty(1, device="cpu") y = torch.empty(8, 8, device="cuda") out = x.resize_as_(y) self.assertEqual(out.shape, (8, 8)) self.assertEqual(out.device.type, "cpu") self.assertTrue(isinstance(out, FakeTensor)) def test_repr(self): with FakeTensorMode(): x = torch.empty(2, 2, device="cpu") self.assertEqual(repr(x), "FakeTensor(..., size=(2, 2))") x = torch.empty(2, 2, device="meta") self.assertEqual(repr(x), "FakeTensor(..., device='meta', size=(2, 2))") @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_zero_dim(self): with FakeTensorMode() as mode: x = torch.tensor(0.0) y = torch.rand([4, 4], device="cuda") out = x + y self.assertEqual(out.shape, (4, 4)) self.assertEqual(out.device, y.device) self.assertTrue(isinstance(out, FakeTensor)) def test_nan_to_num(self): with FakeTensorMode(): for dtype in [torch.float16, torch.float32]: x = torch.rand([4], dtype=dtype) y = torch.nan_to_num(x, nan=None) z = torch.nan_to_num(x, 0.0) self.assertEqual(dtype, y.dtype) self.assertEqual(dtype, z.dtype) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_throw(self): x = torch.tensor(0.0) # TODO: tensor() errors with FakeTensorMode() as mode: x_conv = mode.from_tensor(x) y = torch.rand([4, 4], device="cuda") z = torch.rand([4, 4], device="cpu") self.assertRaises(Exception, lambda: torch.lerp(x_conv, y, z)) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_type_as(self): with FakeTensorMode(): x = torch.rand([16, 1], device="cpu") y = torch.rand([4, 4], device="cuda") out = x.type_as(y) self.assertEqual(out.device.type, "cuda") self.assertTrue(isinstance(out, FakeTensor)) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_setitem(self): for device in ["cpu", "cuda"]: with FakeTensorMode(): x = torch.rand([16, 1], device=device) x[..., 0] = 0 @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_device_inplace_copy(self): with FakeTensorMode(): x = torch.rand([8, 8], device="cpu") y = torch.rand([8, 8], device="cuda") assert x.copy_(y).device.type == "cpu" assert y.copy_(x).device.type == "cuda" def test_fake_dispatch_keys(self): with FakeTensorMode(): x = torch.rand([4]) f = ( FileCheck() .check("CPU") .check("ADInplaceOrView") .check("AutogradCPU") .check("AutocastCPU") ) f.run(torch._C._dispatch_key_set(x)) with torch.inference_mode(): x = torch.rand([4]) y = x + x FileCheck().check("CPU").check("AutocastCPU").run( torch._C._dispatch_key_set(y) ) FileCheck().check_not("ADInplaceOrView").check_not("Autograd").run( torch._C._dispatch_key_set(y) ) def test_batch_tensor(self): x = torch.rand((3, 4, 5)) b = _add_batch_dim(x, 0, 0) mode = FakeTensorMode() fake_b = mode.from_tensor(b) prims.utils.compare_tensor_meta(b, fake_b, check_strides=True) b1 = _add_batch_dim(x, 1, 1) b2 = _add_batch_dim(b1, 0, 2) fake_b2 = mode.from_tensor(b2) prims.utils.compare_tensor_meta(b2, fake_b2, check_strides=True) self.assertTrue(is_batchedtensor(fake_b2)) fake_b1 = get_unwrapped(fake_b2) self.assertTrue(is_batchedtensor(fake_b1)) fake_tensor = get_unwrapped(fake_b1) self.assertIsInstance(fake_tensor, FakeTensor) def test_constructor(self): with FakeTensorMode(): x = torch.rand([4, 4], device="cpu") self.assertTrue(isinstance(x, FakeTensor)) self.assertTrue(x.device.type == "cpu") def test_mode(self): with FakeTensorMode(): y = torch.rand([4], device="cpu") out = y + y self.assertTrue(isinstance(out, FakeTensor)) def test_full(self): # Test torch.full returns tensor with correct dtype with torch._subclasses.CrossRefFakeMode(): y = torch.full((4, 4), 1) def check_function_with_fake(self, fn): out = fn() with torch._subclasses.FakeTensorMode(): out_fake = fn() for a, b in zip(pytree.tree_leaves(out), pytree.tree_leaves(out_fake)): if not isinstance(a, torch.Tensor): self.assertTrue(not isinstance(b, torch.Tensor)) continue prims.utils.compare_tensor_meta(a, b, check_strides=True) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_non_kwarg_device(self): with FakeTensorMode(): x = torch.rand([16, 1], device="cpu") y = x.to(torch.device("cpu")) self.assertIs(x, y) z = x.to(torch.device("cuda")) self.assertEqual(z.device.type, "cuda") def test_non_overlapping_stride_zero(self): def foo(): x = torch.empty_strided([1, 3, 427, 640], (0, 1, 1920, 3)) return x.half() self.check_function_with_fake(foo) def test_fake_mode_error(self): x = torch.rand([4, 4]) with self.assertRaisesRegex(Exception, "Please convert all Tensors"): with FakeTensorMode(): y = x[0] @unittest.skipIf( TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile" ) def test_fake_grad_copy(self): x = torch.rand([4, 4], requires_grad=True) x.grad = torch.rand([4, 4]) mode = FakeTensorMode() fake_x = mode.from_tensor(x) prims.utils.compare_tensor_meta(fake_x, x) prims.utils.compare_tensor_meta(fake_x.grad, x.grad) self.assertTrue(isinstance(fake_x.grad, FakeTensor)) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_index_put_error(self): mode = FakeTensorMode() for context in [contextlib.nullcontext, lambda: mode]: with context(): y = torch.randn(2, 2, 3) x = torch.randn(2, 2, 3).to("cuda") with self.assertRaises(RuntimeError): x[[1, 1]] = y with self.assertRaises(RuntimeError): torch.ops.aten.index_put(x, torch.tensor([1, 1], device="cuda"), y) # no error torch.ops.aten.index_put( x, torch.tensor([1, 1], device="cuda"), torch.tensor(5.0) ) torch.ops.aten.index_put_( x, torch.tensor([1, 1], device="cuda"), torch.tensor(5.0) ) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_like_constructor(self): with FakeTensorMode(): x = torch.rand([4, 4]) y = torch.ones_like(x) self.assertTrue(isinstance(y, FakeTensor)) self.assertEqual(y.device.type, "cpu") z = torch.ones_like(x, device="cuda") self.assertTrue(isinstance(z, FakeTensor)) self.assertEqual(z.device.type, "cuda") def test_binary_op_type_promotion(self): with FakeTensorMode(): x = torch.empty([2, 2], dtype=torch.float) y = torch.empty([2, 2], dtype=torch.int64) out = x / y self.assertEqual(out.dtype, torch.float) self.assertEqual(out.device.type, "cpu") @unittest.skipIf( TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile" ) def test_from_numpy(self): with FakeTensorMode(): x = torch.tensor(np.zeros([4, 4])) self.checkType(x, "cpu", [4, 4]) def test_randperm(self): x = torch.randperm(10) y = torch.randperm(5, device="cpu") with FakeTensorMode(): x1 = torch.randperm(10) prims.utils.compare_tensor_meta(x, x1) y1 = torch.randperm(5, device="cpu") prims.utils.compare_tensor_meta(y, y1) def test_print_in_fake_mode(self): x = torch.zeros(2) # does not fail with FakeTensorMode(): out = str(x) assert "FakeTensor" not in out @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_upsample_bilinear_small_channels(self): out = [] mode = FakeTensorMode() for i, context in enumerate([contextlib.nullcontext, lambda: mode]): with context(): arg0_1 = torch.empty_strided( (3, 427, 640), (1, 1920, 3), dtype=torch.float32, device="cuda" ) unsqueeze = torch.ops.aten.unsqueeze.default(arg0_1, 0) out.append( torch.ops.aten.upsample_bilinear2d.default( unsqueeze, [800, 1199], False ) ) self.assertTrue(out[1].is_contiguous()) self.checkMetaProps(out[0], out[1]) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_cpu_fallback(self): with FakeTensorMode(allow_fallback_kernels=False): filters = torch.randn(8, 4, 3, 3).cuda() inputs = torch.randn(1, 4, 5, 5).cuda() out = torch.nn.functional.conv2d(inputs, filters, padding=1) self.assertEqual(out.device.type, "cuda") self.assertEqual(list(out.size()), [1, 8, 5, 5]) with FakeTensorMode(allow_fallback_kernels=True): # intentionally bad inputs filters = torch.randn(8, 20, 3, 3).cuda() inputs = torch.randn(1, 7, 10, 5).cuda() with self.assertRaises(RuntimeError): torch.nn.functional.conv2d(inputs, filters, padding=1) with FakeTensorMode(allow_fallback_kernels=True): filters = torch.randn(8, 4, 3, 3).cuda() inputs = torch.randn(1, 4, 5, 5).cuda() out = torch.nn.functional.conv2d(inputs, filters, padding=1) self.assertEqual(out.device.type, "cuda") self.assertEqual(list(out.size()), [1, 8, 5, 5]) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_out_multi_device(self): with FakeTensorMode(): x = torch.rand([4]) y = torch.rand([4], device="cuda") with self.assertRaisesRegex(Exception, "found.+two.+devices"): torch.sin(x, out=y) with self.assertRaisesRegex(Exception, "found.+two.+devices"): x.add_(y) @unittest.skipIf( TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile" ) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_normalize_device(self): with FakeTensorMode(): x = torch.empty(1, device="cuda") y = torch.empty(1, device=f"cuda:{torch.cuda.current_device()}") out = x + y self.checkType(out, "cuda", [1]) def test_recursive_invocation(self): mode = FakeTensorMode() with mode: x = torch.tensor(2) mode.in_kernel_invocation = True y = x + x self.assertTrue(mode.in_kernel_invocation) @unittest.skipIf( TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile" ) @skipIfRocm @parametrize( "allow_fallback_kernels", [False, True], lambda a: "with_fallback" if a else "without_fallback", ) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_cudnn_rnn(self, allow_fallback_kernels): def fn( a0, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, a3, a4, a5, ): a1 = [ b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, ] return torch.ops.aten._cudnn_rnn( a0, a1, 4, a3, a4, a5, 2, 2048, 0, 2, False, 0.0, False, True, [], None, ) mode = FakeTensorMode(allow_fallback_kernels=allow_fallback_kernels) for i, context in enumerate([contextlib.nullcontext, lambda: mode]): with context(): inps1 = [ torch.randn([92, 8, 2048]).cuda(), torch.randn([8192, 2048]).cuda(), torch.randn([8192, 2048]).cuda(), torch.randn([8192]).cuda(), torch.randn([8192]).cuda(), torch.randn([8192, 2048]).cuda(), torch.randn([8192, 2048]).cuda(), torch.randn([8192]).cuda(), torch.randn([8192]).cuda(), torch.randn([8192, 4096]).cuda(), torch.randn([8192, 2048]).cuda(), torch.randn([8192]).cuda(), torch.randn([8192]).cuda(), torch.randn([8192, 4096]).cuda(), torch.randn([8192, 2048]).cuda(), torch.randn([8192]).cuda(), torch.randn([8192]).cuda(), torch.randn([167837696]).cuda(), torch.randn([4, 8, 2048]).cuda(), torch.randn([4, 8, 2048]).cuda(), ] inps2 = inps1 inps2[len(inps2) - 1] = None # argument `cx` can be None for inps in [inps1, inps2]: out = fn(*inps) self.assertIs(out[4], inps[-3]) for ten in out: if i == 1: self.assertTrue(isinstance(ten, FakeTensor)) self.assertEqual(ten.device.type, "cuda") @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_cuda_lstm(self): # Ensure CUDA (non-cuDNN) impl succeeds with fake tensors. with torch.backends.cudnn.flags(enabled=False): fake_tensor_mode = FakeTensorMode(allow_fallback_kernels=False) with fake_tensor_mode: N = 5 L = 4 H_in = 2 hidden_size = 3 proj_size = 2 num_layers = 2 bidir = False D = 2 if bidir else 1 H_out = proj_size if proj_size > 0 else hidden_size lstm = torch.nn.LSTM( input_size=H_in, hidden_size=hidden_size, num_layers=num_layers, proj_size=proj_size, batch_first=False, bias=True, bidirectional=bidir, device="cuda", ) h_0 = torch.randn((num_layers * D, N, H_out), device="cuda") c_0 = torch.randn((num_layers * D, N, hidden_size), device="cuda") inp = torch.randn((L, N, H_in), device="cuda") (output, (h_n, c_n)) = lstm(inp, (h_0, c_0)) output.sum().backward() self.assertEqual(output.shape, (L, N, D * H_out)) self.assertEqual(h_n.shape, (D * num_layers, N, H_out)) self.assertEqual(c_n.shape, (D * num_layers, N, hidden_size)) def test_data_dependent_operator(self): with FakeTensorMode(allow_fallback_kernels=False): x = torch.rand([10, 10]) self.assertRaises(DynamicOutputShapeException, lambda: torch.nonzero(x)) def test_parameter_view(self): x = torch.nn.Parameter(torch.randn(4)) x_view = x.view(4) mode = FakeTensorMode() fake_x_view = mode.from_tensor(x_view) fake_x = mode.from_tensor(x) self.assertFalse(isinstance(fake_x_view, torch.nn.Parameter)) self.assertTrue(isinstance(fake_x, torch.nn.Parameter)) def test_tolist(self): shape_env = ShapeEnv() with FakeTensorMode(allow_fallback_kernels=False, shape_env=shape_env): x = torch.rand([10]) x.tolist() # Propagate real tensors doesn't work with fake-on-fake @expectedFailurePropagateRealTensors def test_same_shape_env_preserved(self): shape_env = ShapeEnv() mode1 = FakeTensorMode(shape_env=shape_env) t1 = mode1.from_tensor( torch.randn(10), symbolic_context=StatelessSymbolicContext( dynamic_sizes=[DimDynamic.DYNAMIC], constraint_sizes=[None] ), ) mode2 = FakeTensorMode(shape_env=shape_env) t2 = mode2.from_tensor(t1) # t2.size(0) is still dynamic, even though we didn't pass DYNAMIC here self.assertIsNot(t2, t1) self.assertIs(t1.fake_mode, mode1) self.assertIs(t2.fake_mode, mode2) self.assertIs(t2.size(0).node.shape_env, t1.size(0).node.shape_env) self.assertEqual(str(t2.size(0)), str(t1.size(0))) # TODO: Support NJT. There's also some funny business with dynamic shapes # which would need to be dealt with as well @expectedFailurePropagateRealTensors def test_jagged_fake_to_fake_preserved(self): from torch.nested._internal.nested_tensor import jagged_from_list S0, S1, S2 = 3, 4, 5 D = 4 a = torch.randn(S0, D, requires_grad=True, dtype=torch.float64) b = torch.randn(S1, D, requires_grad=True, dtype=torch.float64) c = torch.randn(S2, D, requires_grad=True, dtype=torch.float64) offsets = None jt, _ = jagged_from_list([a, b, c], offsets) shape_env = ShapeEnv() mode1 = FakeTensorMode(shape_env=shape_env) t1 = mode1.from_tensor(jt) mode2 = FakeTensorMode(shape_env=shape_env) t2 = mode2.from_tensor(t1) # It's not obvious that the invocation above makes it dynamic but it # does! self.assertTrue(free_symbols(t1.size())) self.assertIsNot(t2, t1) self.assertIs(t1.offsets().fake_mode, mode1) self.assertIs(t2.offsets().fake_mode, mode2) self.assertIs(t2.size(1).node.shape_env, t1.size(1).node.shape_env) self.assertEqual(str(t2.size(1)), str(t1.size(1))) def checkMetaProps(self, t1, t2): prims.utils.compare_tensor_meta(t1, t2, check_strides=True) @skipIfCrossRef def test_deepcopy(self): with FakeTensorMode() as mode: pass mod = torch.nn.BatchNorm2d(10) with torch._subclasses.fake_tensor.FakeCopyMode(mode): mod_copied = copy.deepcopy(mod) def check_copy(mod, mod_copied): for name, param in itertools.chain( mod.named_parameters(), mod.named_buffers() ): param_copied = getattr(mod_copied, name) self.checkMetaProps(param, param_copied) self.assertTrue(isinstance(param_copied, FakeTensor)) self.assertEqual( isinstance(param, torch.nn.Parameter), isinstance(param_copied, torch.nn.Parameter), ) self.assertEqual(param.requires_grad, param_copied.requires_grad) check_copy(mod, mod_copied) class ModuleNew(torch.nn.Module): def __init__(self) -> None: super().__init__() self.a = torch.rand([10, 2]) self.b = self.a self.c = self.a[0] mod = ModuleNew() with torch._subclasses.fake_tensor.FakeCopyMode(mode): mod_copied = copy.deepcopy(mod) self.assertIs(mod_copied.a, mod_copied.b) self.assertEqual(mod_copied.b.storage()._cdata, mod_copied.a.storage()._cdata) @unittest.skipIf( TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile" ) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_new(self): with FakeTensorMode(): a = torch.rand([16, 1]) self.checkType(a.new(10, 10), "cpu", [10, 10]) self.checkType(a.new([1, 2, 3, 4]), "cpu", [4]) b = torch.rand([4, 4], device="cuda") self.checkType(b.new(device="cuda"), "cuda", [0]) self.checkType(a.new(torch.rand([1])), "cpu", [1]) @unittest.skipIf( TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile" ) def test_scalar_inputs(self): with FakeTensorMode(): self.checkType(torch.div(3, 2), "cpu", []) ten = torch.zeros(2, dtype=torch.int32) * 2.0 self.assertEqual(ten.dtype, torch.float) self.checkType(ten, "cpu", [2]) @unittest.skipIf( TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile" ) def test_allow_meta(self): def run_meta(): with FakeTensorMode(): x = torch.rand([4], device="meta") return x + x self.checkType(run_meta(), "meta", [4]) with patch.object(torch._functorch.config, "fake_tensor_allow_meta", False): self.assertRaises(Exception, run_meta) def test_embedding_bag_meta(self): def f(): # This behavior was originally unintentional but we see people # relying on it embedding = torch.nn.EmbeddingBag(10, 3, mode="sum", device="meta") input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long) offsets = torch.tensor([0, 4], dtype=torch.long) return embedding(input, offsets) real_out = f() with FakeTensorMode(): fake_out = f() for r, f in zip(real_out, fake_out): self.assertEqual(r.size(), f.size()) self.assertEqual(r.device, f.device) @unittest.skipIf( TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile" ) def test_mixed_real_and_fake_inputs(self): class _TestPattern(torch.nn.Module): def __init__(self) -> None: super().__init__() self.conv = torch.nn.Conv2d(1, 1, 1) self.bn = torch.nn.BatchNorm2d(1) def forward(self, input): running_std = torch.sqrt(self.bn.running_var + self.bn.eps) scale_factor = self.bn.weight / running_std weight_shape = [1] * len(self.conv.weight.shape) weight_shape[0] = -1 bias_shape = [1] * len(self.conv.weight.shape) bias_shape[1] = -1 scaled_weight = self.conv.weight * scale_factor.reshape(weight_shape) zero_bias = torch.zeros_like(self.conv.bias, dtype=input.dtype) conv = self.conv._conv_forward(input, scaled_weight, zero_bias) conv_orig = conv / scale_factor.reshape(bias_shape) conv_orig = conv_orig + self.conv.bias.reshape(bias_shape) conv = self.bn(conv_orig) return conv example_inputs = (torch.randn(1, 1, 3, 3),) mod = _TestPattern() with FakeTensorMode(allow_non_fake_inputs=True): out = mod(torch.randn(1, 1, 3, 3)) self.checkType(out, "cpu", (1, 1, 3, 3)) @unittest.skipIf( TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile" ) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_aten_copy_multi_device(self): with FakeTensorMode(): x1 = torch.rand(4, device="cpu") x2 = torch.rand(4, device="cuda") copy1 = torch.ops.aten.copy.default(x1, x2) copy2 = torch.ops.aten.copy.default(x2, x1) out = torch.empty(4, device="cpu") torch.ops.aten.copy.out(x1, x2, out=out) self.checkType(copy1, "cpu", (4,)) self.checkType(copy2, "cuda", (4,)) self.checkType(out, "cpu", (4,)) @unittest.skipIf( TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile" ) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_aten_index_multi_device(self): with FakeTensorMode(): x1 = torch.rand(4, 4, device="cpu") x2 = torch.rand(4, 4, device="cuda") i1 = torch.tensor([0, 1], device="cuda") i2 = torch.tensor([0, 1], device="cpu") # NB: This one does not work: cuda indices not allowed on cpu # tensor # r1 = torch.ops.aten.index(x1, i1) r2 = torch.ops.aten.index(x2, i2) y1 = torch.rand(4, device="cpu") y2 = torch.rand(4, device="cuda") j1 = torch.tensor([2], device="cuda") j2 = torch.tensor([2], device="cpu") r3 = torch.ops.aten.index_put.default(x1, j1, y1) r4 = torch.ops.aten.index_put.default(x2, j2, y2) # self.checkType(r1, "cpu", ()) self.checkType(r2, "cuda", ()) self.checkType(r3, "cpu", (4, 4)) self.checkType(r4, "cuda", (4, 4)) @unittest.skipIf( TEST_WITH_TORCHDYNAMO, "isinstance check for FakeTensor won't work with compile" ) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_aten_slice_scatter_multi_device(self): with FakeTensorMode(): x1 = torch.rand(4, 4, device="cpu") y1 = torch.rand(2, 4, device="cuda") x2 = torch.rand(4, 4, device="cuda") y2 = torch.rand(2, 4, device="cpu") out = torch.empty(4, 4, device="cpu") r1 = torch.ops.aten.slice_scatter.default(x1, y1, start=2) r2 = torch.ops.aten.slice_scatter.default(x2, y2, start=2) r3 = torch.ops.aten.slice_scatter.out(x1, y1, out=out, start=2) self.checkType(r1, "cpu", (4, 4)) self.checkType(r2, "cuda", (4, 4)) self.checkType(r3, "cpu", (4, 4)) self.checkType(out, "cpu", (4, 4)) def test__adaptive_avg_pool2d_backward(self): with FakeTensorMode(): grad_out = torch.rand(2, 3, 4, 4) inp = torch.rand(2, 3, 4, 4).to(memory_format=torch.channels_last) grad_in = torch.ops.aten._adaptive_avg_pool2d_backward(grad_out, inp) self.assertTrue( torch._prims_common.suggest_memory_format(grad_in) == torch.channels_last ) def test_export_numpy(self): class MyNumpyModel(torch.nn.Module): def forward(self, input): input = input.numpy() return input + np.random.randn(*input.shape) with FakeTensorMode(): ep = torch.export.export(MyNumpyModel(), args=(torch.randn(1000),)) self.assertTrue(isinstance(ep, torch.export.ExportedProgram)) def test_unsqueeze_copy(self): shape_env = ShapeEnv() t1 = torch.ones(2, 2, 768) with FakeTensorMode(shape_env=shape_env) as fake_mode: t = fake_mode.from_tensor( t1, symbolic_context=StatelessSymbolicContext( dynamic_sizes=[ DimDynamic.DYNAMIC, DimDynamic.STATIC, DimDynamic.STATIC, ], ), ) self.assertEqual(t.shape[0], torch.ops.aten.unsqueeze_copy(t, 1).shape[0]) def test_alias_call(self): fwAD = torch.autograd.forward_ad def f(x): return 4312491 * x with torch._subclasses.fake_tensor.FakeTensorMode(): with fwAD.dual_level(): x = torch.randn(3, device="cpu") y = torch.ones_like(x) dual = fwAD.make_dual(x, y) r = f(dual) self.assertIsInstance(r, FakeTensor) self.assertEqual(r.size(), [3]) instantiate_parametrized_tests(FakeTensorTest) def make_propagate_real_tensors_cls(cls): cls = make_test_cls_with_patches( cls, "PropagateRealTensors", "_propagate_real_tensors", (torch._functorch.config, "fake_tensor_propagate_real_tensors", True), xfail_prop="_expected_failure_propagate_real_tensors", decorator=skipIfTorchDynamo("propagate_real_tensors affects Dynamo"), ) cls.__file__ = __file__ cls.__module__ = __name__ globals()[cls.__name__] = cls make_propagate_real_tensors_cls(FakeTensorTest) class FakeTensorConstHandling(TestCase): def assertConst(self, *args): for arg in args: self.assertTrue(arg.constant is not None) def assertNotConst(self, *args): for arg in args: self.assertTrue(arg.constant is None) def test_simple(self): with FakeTensorMode(): x = torch.tensor(4.0) self.assertEqual(x.item(), 4.0) def test_inplace_add(self): with FakeTensorMode(): x = torch.tensor(4.0) y = x.add_(1) self.assertEqual(x.item(), 5.0) self.assertEqual(y.item(), 5.0) self.assertConst(x, y) def test_shared_storages(self): with FakeTensorMode(): x = torch.tensor([4.0]) y = x[:] self.assertEqual(x.storage()._cdata, y.storage()._cdata) self.assertEqual(x.constant.storage()._cdata, y.constant.storage()._cdata) def test_constant_invalidation(self): with FakeTensorMode(): x = torch.tensor([1.0]) self.assertConst(x) y = torch.rand([1]) x.add_(y) self.assertNotConst(x) def test_inplace_view_invalidation(self): with FakeTensorMode(): x = torch.tensor([1]) self.assertConst(x) x.resize_([2]) self.assertEqual(x.size(0), 2) self.assertNotConst(x) def test_fake_tensor_in_intlist_repro(self): def fn(tensors): max_size = torch.tensor([800, 1216], dtype=torch.int64) batch_shape = [len(tensors)] + list(tensors[0].shape[:-2]) + list(max_size) return tensors[0].new_full(batch_shape, 0.0) with self.assertRaises( torch._subclasses.fake_tensor.DataDependentOutputException ): with torch._subclasses.fake_tensor.FakeTensorMode(): a = torch.randn(3, 800, 1199) b = torch.randn(3, 800, 800) inputs = [a, b] ref = fn(inputs) def test_fake_tensor_batch_norm_cpu(self): with torch._subclasses.CrossRefFakeMode(): m = torch.nn.Sequential( torch.nn.BatchNorm2d(10), torch.nn.ReLU(), ) m.eval() out = m(torch.randn([2, 10, 8, 8])) def test_shared_storage_invalidation(self): with FakeTensorMode(): x = torch.tensor([1.0]) y = x[:] self.assertConst(x, y) y.add_(torch.rand([1])) self.assertNotConst(x, y) def test_aliased_const_write(self): with FakeTensorMode(): x = torch.tensor([1]) y = x.expand([4]) self.assertNotConst(y) y[0] = 1 self.assertNotConst(x) def test_constant_propagate_through_functions(self): with FakeTensorMode(): y = torch.div(4, 4, rounding_mode="trunc") self.assertConst(y) make_propagate_real_tensors_cls(FakeTensorConstHandling) def contains_type(type: torch.Type, maybe_contained_type: torch.Type): return maybe_contained_type.isSubtypeOf(type) or any( contains_type(e, maybe_contained_type) for e in type.containedTypes() ) class FakeTensorOpInfoTest(TestCase): @ops(custom_op_db, dtypes=OpDTypes.any_one) def test_fake(self, device, dtype, op): sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False) for sample_input in sample_inputs_itr: args = (sample_input.input,) + sample_input.args kwargs = sample_input.kwargs optests.fake_check(op, args, kwargs) make_propagate_real_tensors_cls(FakeTensorOpInfoTest) instantiate_device_type_tests(FakeTensorOpInfoTest, globals(), only_for=("cpu", "cuda")) instantiate_device_type_tests( PropagateRealTensorsFakeTensorOpInfoTest, globals(), only_for=("cpu",) # noqa: F821 ) class FakeTensorConverterTest(TestCase): def test_memoized_conversion_to_meta(self): x = torch.rand(2, 2, 2) mode = FakeTensorMode() self.assertTrue(mode.from_tensor(x) is mode.from_tensor(x)) def test_memoized_conversion_from_meta(self): x = torch.rand(2, 2).to(device="meta") mode = FakeTensorMode() converter = mode.fake_tensor_converter self.assertTrue( converter.from_meta_and_device(mode, x, "cpu") is converter.from_meta_and_device(mode, x, "cpu") ) def test_separate_tensor_storages_view(self): x = torch.rand(2, 2, 2) y = x[0] mode = FakeTensorMode() converter = mode.fake_tensor_converter x_conv = converter.from_real_tensor(mode, x) y_conv = converter.from_real_tensor(mode, y) self.assertEqual(torch._C._storage_id(x_conv), torch._C._storage_id(y_conv)) @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991") def test_separate_tensor_storages_non_view(self): x = torch.rand(2, 2, 2) y = torch.rand(4, 2) y.set_(x.storage()) mode = FakeTensorMode() converter = mode.fake_tensor_converter x_conv = converter.from_real_tensor(mode, x) y_conv = converter.from_real_tensor(mode, y) stor_id = torch._C._storage_id(x_conv) self.assertEqual(stor_id, torch._C._storage_id(y_conv)) del x del x_conv self.assertEqual(len(converter.tensor_memo), 1) self.assertEqual(len(converter.meta_converter.storage_memo), 1) del y del y_conv self.assertEqual(len(converter.tensor_memo), 0) self.assertEqual(len(converter.meta_converter.storage_memo), 0) @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991") def test_dead_weak_ref(self): x = torch.rand(2, 2, 2) y = x[0] mode = FakeTensorMode() converter = FakeTensorConverter() x_conv = converter.from_real_tensor(mode, x) x_conv_storage = x_conv.untyped_storage() del x_conv self.assertFalse(x in converter.tensor_memo) y_conv = converter.from_real_tensor(mode, y) self.assertIs(x_conv_storage, y_conv.untyped_storage()) @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991") def test_dead_key(self): x = torch.rand(2, 2, 2) mode = FakeTensorMode() converter = FakeTensorConverter() x_conv = converter.from_real_tensor(mode, x) self.assertEqual(len(converter.tensor_memo), 1) x_conv2 = converter.from_real_tensor(mode, x) assert x_conv2 is x_conv del x del x_conv del x_conv2 self.assertEqual(len(converter.tensor_memo), 0) def test_no_active_mode(self): with FakeTensorMode() as mode: x = torch.empty(2, 2, device="cpu") y = torch.empty(2, 2, device="cpu") out = x + y self.assertEqual(mode, out.fake_mode) self.assertTrue(isinstance(out, FakeTensor)) self.assertEqual(out.device.type, "cpu") def test_multiple_modes(self): t = torch.rand([4]) t2 = torch.rand([4]) with FakeTensorMode() as m: with FakeTensorMode() as m2: t_fake = m.from_tensor(t) t2_fake = m2.from_tensor(t2) with self.assertRaisesRegex(Exception, "Mixing fake modes"): t_fake + t2_fake def test_separate_mode_error(self): with FakeTensorMode(): x = torch.empty(2, 2, device="cpu") with FakeTensorMode(): y = torch.empty(2, 2, device="cpu") self.assertRaises(Exception, lambda: x, y) @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991") def test_no_ref_cycle(self): x = torch.rand([4]) mode = FakeTensorMode() y = mode.from_tensor(x) self.assertEqual(len(mode.fake_tensor_converter.tensor_memo), 1) mode_weak = weakref.ref(mode) y_weak = weakref.ref(mode) del mode del y assert mode_weak() is None assert y_weak() is None make_propagate_real_tensors_cls(FakeTensorConverterTest) class FakeTensorOperatorInvariants(TestCase): def get_aten_op(self, schema): namespace, name = schema.name.split("::") overload = schema.overload_name if schema.overload_name else "default" assert namespace == "aten" return getattr(getattr(torch.ops.aten, name), overload) def get_all_aten_schemas(self): for schema in torch._C._jit_get_all_schemas(): namespace = schema.name.split("::")[0] if namespace != "aten": continue yield schema def test_non_kwarg_only_device(self): for schema in self.get_all_aten_schemas(): ten_type = torch._C.TensorType.get() if not any( contains_type(arg.type, ten_type) for arg in itertools.chain(schema.arguments, schema.returns) ): continue opt_device = torch._C.OptionalType(torch._C.DeviceObjType.get()) has_non_kwarg_device = any( not arg.kwarg_only and arg.type.isSubtypeOf(opt_device) for arg in schema.arguments ) if has_non_kwarg_device: self.assertTrue( self.get_aten_op(schema) in torch._subclasses.fake_tensor._device_not_kwarg_ops ) def test_tensor_constructors_all_have_kwarg_device(self): for schema in self.get_all_aten_schemas(): op = self.get_aten_op(schema) if not torch._subclasses.fake_tensor._is_tensor_constructor(op): continue opt_device = torch._C.OptionalType(torch._C.DeviceObjType.get()) has_kwarg_device = any( arg.kwarg_only and arg.type.isSubtypeOf(opt_device) for arg in schema.arguments ) self.assertTrue( has_kwarg_device or op == torch.ops.aten._list_to_tensor.default ) @unittest.expectedFailure def test_sparse_new(self): with FakeTensorMode(): indices = torch.randn(1, 1, dtype=torch.int64) values = torch.randn(1) extra = (2,) sparse = torch.randn(1).to_sparse() # This used to segfault, now it does not, but it still raises an # error sparse2 = sparse.new(indices, values, extra) def test_tensor_new(self): with FakeTensorMode(): x = torch.Tensor([1, 2, 3]) self.assertIsInstance(x, FakeTensor) def test_like_ops(self): for schema in self.get_all_aten_schemas(): if "_like" == schema.name[-5:]: op = self.get_aten_op(schema) self.assertIn( op, torch._subclasses.fake_tensor._like_tensor_constructors ) def test_str_storage(self): x = torch.zeros(3) with FakeTensorMode() as m: y = m.from_tensor(x) self.assertExpectedInline( str(x.storage()), """\ 0.0 0.0 0.0 [torch.storage.TypedStorage(dtype=torch.float32, device=cpu) of size 3]""", ) self.assertExpectedInline( str(y.storage()), """\ ... [torch.storage.TypedStorage(dtype=torch.float32, device=meta) of size 3]""", ) self.assertExpectedInline( str(y.storage()), """\ ... [torch.storage.TypedStorage(dtype=torch.float32, device=meta) of size 3]""", ) # at::_embedding_bag has no op info, # and returns extra tensors that at::embedding bag throws away def test_embedding_bag_private(self): args = [ torch.ones(6, 1), torch.ones(6, dtype=torch.int64), torch.arange(2, dtype=torch.int64), False, 2, # mode = max ] ref_out = torch.ops.aten._embedding_bag(*args) with FakeTensorMode() as m: meta_args = [ m.from_tensor(a) if isinstance(a, torch.Tensor) else a for a in args ] meta_out = torch.ops.aten._embedding_bag(*meta_args) self.assertEqual(len(ref_out), len(meta_out)) for ref_o, meta_o in zip(ref_out, meta_out): self.assertEqual(ref_o.size(), meta_o.size()) def test_cross_entropy_loss(self): inp = torch.randn(3, 5) target = torch.randint(5, (3,), dtype=torch.long) weight = torch.rand(5) fn = torch.nn.functional.cross_entropy for w in (weight, None): args = (inp, target, w) ref = fn(*args) with FakeTensorMode() as m: meta_args = [ m.from_tensor(a) if isinstance(a, torch.Tensor) else a for a in args ] meta_out = torch.nn.functional.cross_entropy( *meta_args, label_smoothing=0.5 ) self.assertEqual(ref.size(), meta_out.size()) @skipIfRocm @unittest.skipIf( not PLATFORM_SUPPORTS_FLASH_ATTENTION, "Does not support SDPA or pre-SM80 hardware", ) def test_flash_attention(self): class Repro(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, arg1, arg2, arg3): torch.ops.aten._scaled_dot_product_flash_attention( arg1, arg2, arg3, scale=0.17677669529663687 ) args_new = [ [ ((1, 48, 64, 64), (0, 4096, 64, 1), torch.float16, "cuda"), ((1, 48, 64, 64), (0, 4096, 64, 1), torch.float16, "cuda"), ((1, 48, 64, 64), (0, 4096, 64, 1), torch.float16, "cuda"), ], [ ((4, 2, 16, 32), (1024, 512, 32, 1), torch.float16, "cuda"), ((4, 2, 16, 32), (1024, 512, 32, 1), torch.float16, "cuda"), ((4, 2, 16, 32), (1024, 512, 32, 1), torch.float16, "cuda"), ], ] for args_list in args_new: args = [ rand_strided(bsz, num_heads, seq_len, head_dim) for (bsz, num_heads, seq_len, head_dim) in args_list ] try: with torch._subclasses.CrossRefFakeMode(): Repro()(*args) except RuntimeError as e: # We expect the cross ref to succed for the first output to fail # for the rng state, see Note [Seed and Offset] self.assertTrue("output[0]" not in str(e)) self.assertTrue( "found mismatched tensor metadata for output[6]: Devices cpu and cuda:0 are not equal!" in str(e) ) # IMPORTANT!!! Always run even if CUDA is not available def test_fake_gpu_no_init(self): # Skip this test, we will try to run CUDA operations to real prop so # it clearly will not work on CPU runner if torch._functorch.config.fake_tensor_propagate_real_tensors: return with FakeTensorMode(): torch.empty(10, device=GPU_TYPE) torch.ones(10, device=GPU_TYPE) torch.zeros(10, device=GPU_TYPE) torch.rand(10, device=GPU_TYPE) torch.tensor(3.14, device=GPU_TYPE) torch.tensor([[3.14, 2], [1, 2]], device=GPU_TYPE) @skipIfRocm @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_conv_c1_backward(self): class Repro(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward(self, arg1, arg2, arg3): torch.ops.aten.convolution_backward.default( arg1, arg2, arg3, [1], [1, 1], [1, 1], [1, 1], False, [0, 0], 1, [True, True, False], ) args_new = [ ((16, 1, 128, 128), (16384, 16384, 128, 1), torch.float16, "cuda"), ((16, 64, 128, 128), (1048576, 1, 8192, 64), torch.float16, "cuda"), ((1, 64, 3, 3), (576, 9, 3, 1), torch.float16, "cuda"), ] args = [rand_strided(sh, st, dt, dev) for (sh, st, dt, dev) in args_new] with torch._subclasses.CrossRefFakeMode(): Repro()(*args) def test_no_dispatch_with_like_function(self): class CountingMode(TorchDispatchMode): def __init__(self) -> None: self.count = 0 def __torch_dispatch__(self, func, types, args=(), kwargs=None): self.count += 1 return func(*args, **kwargs) with FakeTensorMode(): x = torch.randn(2) with CountingMode() as mode: with no_dispatch(): torch.zeros_like(x) self.assertEqual(mode.count, 0) make_propagate_real_tensors_cls(FakeTensorOperatorInvariants) class FakeTensorPropTest(TestCase): def test_fake_tensor_prop_on_nn_module(self): class ToyNnModuleWithParameters(torch.nn.Module): def __init__(self) -> None: super().__init__() self.layer1 = torch.nn.Linear(4, 3) self.layer2 = torch.nn.Linear(3, 2) def forward(self, value): value = self.layer1(value) value = torch.relu(value) value = self.layer2(value) return value model = ToyNnModuleWithParameters() value = torch.randn(5, 4) # Convert nn.Module to GraphModule so that FakeTensorProp runs. graph_model = torch.fx.symbolic_trace(model, (value,)) # The following block runs FakeTensorProp on graph_module w/to the same FakeTensorMode # # TODO(wschin): there should be an API to run FakeTensorProp for GraphModule # with parameters and buffers. with FakeTensorMode() as fake_tensor_mode: def to_fake_tensor(x): if isinstance(x, torch.Tensor) and not isinstance(x, FakeTensor): return fake_tensor_mode.from_tensor(x) return x fake_parameters_and_buffers = { k: to_fake_tensor(v) for k, v in itertools.chain( graph_model.named_parameters(), graph_model.named_buffers() ) } with torch.nn.utils.stateless._reparametrize_module( graph_model, fake_parameters_and_buffers ): # This case uses the **same** fake tensor mode to # 1. create fake parameters and fake buffers, and # 2. run FakeTensorProp # The result should be correct. result = FakeTensorProp(graph_model, fake_tensor_mode).propagate(value) self.assertTrue(isinstance(result, FakeTensor)) self.assertEqual(result.shape, (5, 2)) # This case uses the **different** fake tensor modes to # 1. create fake parameters and fake buffers, and # 2. run FakeTensorProp # The following code should fail. failed = False try: FakeTensorProp(graph_model).propagate(value) except AssertionError: # AssertionError: tensor's device must be `meta`, got cpu instead failed = True self.assertTrue(failed) def test_fake_tensor_prop_on_nn_module_with_optional_args(self): class OptionalArgumentInBetween(torch.nn.Module): def __init__(self) -> None: super().__init__() self.layer1 = torch.nn.Linear(4, 3) self.layer2 = torch.nn.Linear(3, 2) def forward(self, value, another_value=None, another_optional_value=None): # Mimic huggingface's `forward` methods which have several optional arguments. # For example, GPT accepts forward(self, input_ids, None, attention_mask, ...). # To apply FakeTensorProp, its from_real_tensor(...) needs to accept None. if another_value is None: another_value = torch.rand_like(value) if another_optional_value is None: another_optional_value = torch.rand_like(value) value = value + another_value + another_optional_value return value * value fake_mode = FakeTensorMode( allow_non_fake_inputs=True, allow_fallback_kernels=False ) with fake_mode: model = OptionalArgumentInBetween() value = torch.randn(5, 4) another_optional_value = torch.randn(5, 4) graph_model = torch.fx.symbolic_trace( model, (value, None, another_optional_value) ) FakeTensorProp(graph_model, fake_mode).propagate( value, None, another_optional_value ) def test_unbacked_shape_realloc(self): def f(x): return x.nonzero() shape_env = ShapeEnv() fake_mode = FakeTensorMode(shape_env=shape_env) with fake_mode: value = torch.randn(5) gm = make_fx(f)(value) nonzero_nodes = [ n for n in gm.graph.nodes if n.target is torch.ops.aten.nonzero.default ] self.assertEqual(len(nonzero_nodes), 1) self.assertIsInstance(nonzero_nodes[0].meta["val"].shape[0], torch.SymInt) u0 = nonzero_nodes[0].meta["val"].shape[0] FakeTensorProp(gm, fake_mode).propagate(value) u1 = nonzero_nodes[0].meta["val"].shape[0] # Test that this test is actually doing something in that the # FakeTensorProp actually triggered a reallocation. If this assert is # failing, it could be because we started memoizing the nnz count for # nonzero, which is nice in some sense (no reallocation) but not # helpful for this test, which is checking what we do when we have # to reallocate. If so, you need to make this example more # complicated (e.g., maybe have a nontrivial computation on the input # before feeding it into nonzero, or have some sort of randomness) self.assertIsNot(u0, u1) self.assertTrue(statically_known_true(u0 == u1)) def test_torch_load_with_fake_mode(self): class TheModelClass(torch.nn.Module): def __init__(self) -> None: super().__init__() self.fc1 = torch.nn.Linear(5, 10) def forward(self, x): return self.fc1(x) with TemporaryFileName() as state_dict_file: # Create state_dict to be loaded later model = TheModelClass() torch.save(model.state_dict(), state_dict_file) fake_mode = FakeTensorMode() with fake_mode: torch.load(state_dict_file) # scenario 1 torch.load(state_dict_file, map_location="cpu") # scenario 2 make_propagate_real_tensors_cls(FakeTensorPropTest) class FakeTensorSerialization(TestCase): def test_serialization(self): x = torch.tensor([0], device="cpu") with FakeTensorMode(): y = pickle.loads(pickle.dumps(x)) self.assertEqual(type(y), FakeTensor) self.assertEqual(y.device.type, "meta") with unset_fake_temporarily(): y = pickle.loads(pickle.dumps(x)) self.assertEqual(x.device, y.device) def test_serialization_with_tracing(self): x = torch.tensor([0], device="cpu") with tracing(TracingContext(FakeTensorMode())): y = pickle.loads(pickle.dumps(x)) self.assertEqual(x.device, y.device) class FakeTensorDispatchCache(TestCase): def test_shape_env_settings(self): """ Validation that any boolean settings in ShapeEnv are present in the ShapeEnvSettings. We hope to ensure that any new settings that might affect FakeTensor dispatch are included in the cache key calculation. If this test fails, consider updating ShapeEnvSettings or change this test to omit checking for the new field. """ init_sig = inspect.signature(ShapeEnv._init) args = [ name for name, param in init_sig.parameters.items() if type(param.default) is bool ] settings = [f.name for f in dataclasses.fields(ShapeEnvSettings)] for arg in args: self.assertTrue(arg in settings) def _test_cache_key(self, fm, x, y, z): """ Helper for all test_cache_key_* tests below. Assert that the cache keys for inputs x and y are the same, but z is different. """ func = aten.add.Tensor state = _CacheKeyState() key_x = fm._cache_key(state, func, [x], {}) key_y = fm._cache_key(state, func, [y], {}) key_z = fm._cache_key(state, func, [z], {}) self.assertEqual(key_x, key_y) self.assertNotEqual(key_x, key_z) def test_cache_key_dtype(self): with FakeTensorMode() as fm: x = torch.randn(4, 3, dtype=torch.float16) y = torch.randn(4, 3, dtype=torch.float16) z = x.to(dtype=torch.float32) self._test_cache_key(fm, x, y, z) def test_cache_key_shape(self): with FakeTensorMode() as fm: x = torch.randn(4, 3) y = torch.randn(4, 3) z = torch.randn(4, 2) self._test_cache_key(fm, x, y, z) def test_cache_key_stride(self): with FakeTensorMode() as fm: x = torch.randn(4, 2) y = torch.randn(4, 2) z = x.as_strided((4, 2), (1, 2)) self._test_cache_key(fm, x, y, z) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_cache_key_device(self): with FakeTensorMode() as fm: x = torch.randn(4, 3) y = torch.randn(4, 3) z = x.to(device="cuda") self._test_cache_key(fm, x, y, z) def test_cache_key_memory_format(self): with FakeTensorMode() as fm: x = torch.randn(1, 2, 3, 4) y = torch.randn(1, 2, 3, 4) z = x.to(memory_format=torch.channels_last) self._test_cache_key(fm, x, y, z) def test_cache_key_storage_offset(self): with FakeTensorMode() as fm: x = torch.randn(3)[1:] y = torch.randn(3)[1:] z = torch.randn(2) self._test_cache_key(fm, x, y, z) def test_cache_key_requires_grad(self): with FakeTensorMode() as fm: x = torch.randn(4, 3) y = torch.randn(4, 3) z = torch.randn(4, 3, requires_grad=True) self._test_cache_key(fm, x, y, z) def test_cache_key_is_conj(self): with FakeTensorMode() as fm: x = torch.randn(4, 3, dtype=torch.complex64) y = torch.randn(4, 3, dtype=torch.complex64) z = torch.randn(4, 3, dtype=torch.complex64) torch._C._set_conj(z, not z.is_conj()) self._test_cache_key(fm, x, y, z) def test_cache_key_is_neg(self): with FakeTensorMode() as fm: x = torch.randn(4, 3, dtype=torch.complex64) y = torch.randn(4, 3, dtype=torch.complex64) z = torch.randn(4, 3, dtype=torch.complex64) torch._C._set_neg(z, not z.is_neg()) self._test_cache_key(fm, x, y, z) def test_cache_key_is_inference(self): with torch.inference_mode(True): t = torch.randn(4, 3) with FakeTensorMode() as fm: x = torch.randn(4, 3) y = torch.randn(4, 3) z = fm.from_tensor(t) self._test_cache_key(fm, x, y, z) def test_cache_key_constants(self): with FakeTensorMode() as fm: # Python hashes 1.0 to the same value as 1. Make sure the # cache key calculation differentiates them. self._test_cache_key(fm, 1.0, 1.0, 1) self._test_cache_key(fm, 0.0, 0.0, 0) def assertHitsMisses(self, hits, misses): """ Helper to assert on the number of recorded hits and misses. """ info = FakeTensorMode.cache_info() self.assertEqual(info.hits, hits) self.assertEqual(info.misses, misses) def assertBypasses(self, reason, count): """ Helper to assert on the number of recorded bypasses. """ info = FakeTensorMode.cache_info() if count > 0: self.assertIn(reason, info.bypasses) self.assertEqual(info.bypasses[reason], count) else: self.assertNotIn(reason, info.bypasses) def test_cache_hit(self): """ Test that cache hit/miss counters are updated correctly. """ with FakeTensorMode(): x = torch.randn(4, 3) y = torch.randn(4, 3) FakeTensorMode.cache_clear() self.assertHitsMisses(0, 0) res1 = x + y self.assertHitsMisses(0, 1) res2 = x + y self.assertHitsMisses(1, 1) self.assertEqual( extract_tensor_metadata(res1), extract_tensor_metadata(res2), ) def test_cache_bypass(self): """ Test that cache bypass counters are updated correctly. """ with FakeTensorMode(): x = torch.randn(1, 2) FakeTensorMode.cache_clear() self.assertBypasses("inplace view", 0) x.unsqueeze_(0) self.assertBypasses("inplace view", 1) def test_cache_default_dtype(self): """ Test that the default dtype is respected when serving cached results. """ with FakeTensorMode(): x = torch.tensor([1, 2], dtype=torch.int32) torch.set_default_dtype(torch.float32) FakeTensorMode.cache_clear() self.assertHitsMisses(0, 0) y = x + 1.0 self.assertEqual(y.dtype, torch.float32) self.assertHitsMisses(0, 1) torch.set_default_dtype(torch.float16) y = x + 1.0 self.assertEqual(y.dtype, torch.float16) self.assertHitsMisses(0, 2) torch.set_default_dtype(torch.float32) y = x + 1.0 self.assertEqual(y.dtype, torch.float32) self.assertHitsMisses(1, 2) @unittest.skipIf(not RUN_CUDA, "requires cuda") def test_cache_default_device(self): """ Test that the default device is respected when serving cached results. """ with FakeTensorMode(): FakeTensorMode.cache_clear() self.assertHitsMisses(0, 0) torch.set_default_device("cpu") x = torch.tensor([1, 2]) y = x + 1.0 self.assertEqual(y.device.type, "cpu") self.assertHitsMisses(0, 1) torch.set_default_device("cuda") x = torch.tensor([1, 2]) y = x + 1.0 self.assertEqual(y.device.type, "cuda") self.assertHitsMisses(0, 2) torch.set_default_device("cpu") x = torch.tensor([1, 2]) y = x + 1.0 self.assertEqual(y.device.type, "cpu") self.assertHitsMisses(1, 2) def test_cache_inplace_op(self): """ Test that inplace ops served from the cache correctly reference the input parameter. """ with FakeTensorMode(): x = torch.randn(1, 2) y = torch.randn(1, 2) FakeTensorMode.cache_clear() self.assertHitsMisses(0, 0) z = x.add_(y) self.assertHitsMisses(0, 1) self.assertEqual(id(x), id(z)) w = x.add_(y) self.assertHitsMisses(1, 1) self.assertEqual(id(x), id(w)) def test_cache_view_op(self): """ Test that view ops are handled correctly when served from the cache. """ with FakeTensorMode(): x1 = torch.ones(2, requires_grad=True).clone() x2 = torch.ones(2, requires_grad=True).clone() y2 = x2.view(-1) # Test operating on a non-view tensor, then the same operation # on a view tensor. Assert that the view property is set correctly. z1 = x1.mul_(2) self.assertFalse(z1._is_view()) z2 = y2.mul_(2) self.assertTrue(z2._is_view()) # Now the other way around: first operate on a view tensor, then # the same operation on a non-view tensor. z2 = y2.mul_(2) self.assertTrue(z2._is_view()) z1 = x1.mul_(2) self.assertFalse(z1._is_view()) def test_cache_dispatch_key_set(self): """ Test that operations that change the dispatch key set bypass caching. """ with FakeTensorMode(): FakeTensorMode.cache_clear() self.assertBypasses("dispatch_key_set mismatch", 0) x = torch._efficientzerotensor(3) self.assertTrue(x._is_zerotensor()) self.assertBypasses("dispatch_key_set mismatch", 1) y = torch._efficientzerotensor(3) self.assertTrue(y._is_zerotensor()) self.assertBypasses("dispatch_key_set mismatch", 2) def test_inference_mode(self): """ Test that caching handles inference mode correctly. """ with FakeTensorMode(): x = torch.randn(4, 3) y = torch.randn(4, 3) FakeTensorMode.cache_clear() self.assertHitsMisses(0, 0) # Expect a miss when the inference mode is different res1 = x + y with torch.inference_mode(): res2 = x + y self.assertHitsMisses(0, 2) self.assertFalse(res1.is_inference()) self.assertTrue(res2.is_inference()) # Second tries should see hits res3 = x + y self.assertHitsMisses(1, 2) self.assertFalse(res3.is_inference()) self.assertEqual( extract_tensor_metadata(res1), extract_tensor_metadata(res3), ) with torch.inference_mode(): res4 = x + y self.assertHitsMisses(2, 2) self.assertTrue(res4.is_inference()) self.assertEqual( extract_tensor_metadata(res2), extract_tensor_metadata(res4), ) if __name__ == "__main__": run_tests()