# Owner(s): ["module: tests"] import random from itertools import permutations, product import numpy as np import torch from torch import nan from torch.testing import make_tensor from torch.testing._internal.common_device_type import ( dtypes, dtypesIfCPU, dtypesIfCUDA, instantiate_device_type_tests, largeTensorTest, onlyCPU, onlyCUDA, onlyNativeDeviceTypes, ) from torch.testing._internal.common_dtype import ( all_types, all_types_and, floating_types_and, integral_types, ) from torch.testing._internal.common_utils import ( run_tests, skipIfTorchDynamo, slowTest, TestCase, ) class TestSortAndSelect(TestCase): def assertIsOrdered(self, order, x, mxx, ixx, task): SIZE = x.size(1) if order == "descending": def check_order(a, b): # `a != a` because we put NaNs # at the end of ascending sorted lists, # and the beginning of descending ones. return ((a != a) | (a >= b)).all().item() elif order == "ascending": def check_order(a, b): # see above return ((b != b) | (a <= b)).all().item() else: error( # noqa: F821 f'unknown order "{order}", must be "ascending" or "descending"' ) are_ordered = True for k in range(1, SIZE): self.assertTrue( check_order(mxx[:, k - 1], mxx[:, k]), f"torch.sort ({order}) values unordered for {task}", ) seen = set() indicesCorrect = True size0 = x.size(0) size = x.size(x.dim() - 1) x = x.tolist() mxx = mxx.tolist() ixx = ixx.tolist() for k in range(size0): seen.clear() for j in range(size): self.assertEqual( x[k][ixx[k][j]], mxx[k][j], msg=f"torch.sort ({order}) indices wrong for {task}", ) seen.add(ixx[k][j]) self.assertEqual(len(seen), size) def test_sort(self, device): # on CUDA 2048 vs >2048 have different code path for the dim being sorted for SIZE in (4, 2049): x = torch.rand(4, SIZE, device=device) res1val, res1ind = torch.sort(x) # Test inplace y = x.clone() y_inds = torch.tensor((), dtype=torch.int64, device=device) torch.sort(y, out=(y, y_inds)) x_vals, x_inds = torch.sort(x) self.assertEqual(x_vals, y) self.assertEqual(x_inds, y_inds) # Test use of result tensor res2val = torch.tensor((), device=device) res2ind = torch.tensor((), device=device, dtype=torch.long) torch.sort(x, out=(res2val, res2ind)) self.assertEqual(res1val, res2val, atol=0, rtol=0) self.assertEqual(res1ind, res2ind, atol=0, rtol=0) self.assertEqual(torch.argsort(x), res1ind) self.assertEqual(x.argsort(), res1ind) # Test sorting of random numbers self.assertIsOrdered("ascending", x, res2val, res2ind, "random") # Test simple sort self.assertEqual( torch.sort(torch.tensor((50, 40, 30, 20, 10), device=device))[0], torch.tensor((10, 20, 30, 40, 50), device=device), atol=0, rtol=0, ) # Test that we still have proper sorting with duplicate keys x = torch.floor(torch.rand(4, SIZE, device=device) * 10) torch.sort(x, out=(res2val, res2ind)) self.assertIsOrdered( "ascending", x, res2val, res2ind, "random with duplicate keys" ) # DESCENDING SORT x = torch.rand(4, SIZE, device=device) res1val, res1ind = torch.sort(x, x.dim() - 1, True) # Test use of result tensor res2val = torch.tensor((), device=device) res2ind = torch.tensor((), device=device, dtype=torch.long) torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind)) self.assertEqual(res1val, res2val, atol=0, rtol=0) self.assertEqual(res1ind, res2ind, atol=0, rtol=0) self.assertEqual(torch.argsort(x, x.dim() - 1, True), res1ind) self.assertEqual(x.argsort(x.dim() - 1, True), res1ind) # Test sorting of random numbers self.assertIsOrdered("descending", x, res2val, res2ind, "random") # Test simple sort task self.assertEqual( torch.sort(torch.tensor((10, 20, 30, 40, 50), device=device), 0, True)[ 0 ], torch.tensor((50, 40, 30, 20, 10), device=device), atol=0, rtol=0, ) # Test that we still have proper sorting with duplicate keys self.assertIsOrdered( "descending", x, res2val, res2ind, "random with duplicate keys" ) # Test argument sorting with and without stable x = torch.tensor([1, 10, 2, 2, 3, 7, 7, 8, 9, 9] * 3) self.assertEqual( torch.argsort(x, stable=True), torch.sort(x, stable=True).indices ) self.assertEqual( torch.argsort(x, stable=False), torch.sort(x, stable=False).indices ) self.assertEqual(torch.argsort(x), torch.sort(x).indices) # Test sorting with NaNs x = torch.rand(4, SIZE, device=device) x[1][2] = float("NaN") x[3][0] = float("NaN") torch.sort(x, out=(res2val, res2ind)) self.assertIsOrdered("ascending", x, res2val, res2ind, "random with NaNs") torch.sort(x, out=(res2val, res2ind), descending=True) self.assertIsOrdered("descending", x, res2val, res2ind, "random with NaNs") def test_sort_stable_none(self): # Called sort with stable=None used to trigger an assertion # See https://github.com/pytorch/pytorch/issues/117255 x = torch.ones(10) y = x.sort(stable=None).values self.assertTrue(torch.all(y == torch.ones(10)).item()) @onlyCUDA def test_sort_large_slice(self, device): # tests direct cub path x = torch.randn(4, 1024000, device=device) res1val, res1ind = torch.sort(x, stable=True) torch.cuda.synchronize() # assertIsOrdered is too slow, so just compare to cpu res1val_cpu, res1ind_cpu = torch.sort(x.cpu(), stable=True) self.assertEqual(res1val, res1val_cpu.cuda()) self.assertEqual(res1ind, res1ind_cpu.cuda()) res1val, res1ind = torch.sort(x, descending=True, stable=True) torch.cuda.synchronize() res1val_cpu, res1ind_cpu = torch.sort(x.cpu(), descending=True, stable=True) self.assertEqual(res1val, res1val_cpu.cuda()) self.assertEqual(res1ind, res1ind_cpu.cuda()) # FIXME: remove torch.bool from unsupported types once support is added for cub sort @dtypes(*all_types_and(torch.half, torch.bfloat16)) def test_stable_sort(self, device, dtype): sizes = (100, 1000, 10000) for ncopies in sizes: x = torch.tensor([0, 1] * ncopies, dtype=dtype, device=device) _, idx = x.sort(stable=True) self.assertEqual( idx[:ncopies], torch.arange(start=0, end=2 * ncopies, step=2, device=device), ) self.assertEqual( idx[ncopies:], torch.arange(start=1, end=2 * ncopies, step=2, device=device), ) @onlyCUDA @dtypes(torch.uint8) @largeTensorTest("200GB") # Unfortunately 80GB A100 is not large enough def test_sort_large(self, device, dtype): t0 = torch.randperm(8192, device=device).to(dtype) t = t0.view(1, 8192).expand(2**18 + 1, -1).contiguous() v, i = t.sort() del t iv, im = i.var_mean(dim=0) del i vv, vm = v.var_mean(dim=0) del v self.assertEqual(vv, torch.zeros_like(vv)) self.assertEqual(iv, torch.zeros_like(iv)) self.assertEqual(vm, torch.arange(255, dtype=dtype, device=device)) self.assertEqual(im, t0.sort().indices) @dtypes(torch.float32) def test_sort_restride(self, device, dtype): # Input: non-contiguous (stride: 5) 3-element array tensor = torch.randn((3, 5), dtype=dtype, device=device)[:, 0] # Outputs: 0-dim tensors # They will need to be resized, which means they will also be # restrided with the input tensor's strides as base. values = torch.tensor(0, dtype=dtype, device=device) indices = torch.tensor(0, dtype=torch.long, device=device) torch.sort(tensor, out=(values, indices)) # Check: outputs were restrided to dense strides self.assertEqual(values.stride(), (1,)) self.assertEqual(indices.stride(), (1,)) # Check: 'tensor' indexed by 'indices' is equal to 'values' self.assertEqual(tensor[indices], values) def _test_sort_discontiguous(self, device, dtype): # on CUDA 2048 vs >2048 have different code path for the dim being sorted sizes = (5, 7, 2049) for shape in permutations(sizes): for perm in permutations((0, 1, 2)): for dim in range(3): t = torch.randn(shape, device=device, dtype=dtype).permute(perm) r1 = t.sort(dim=dim) r2 = t.contiguous().sort(dim=dim) self.assertEqual(r1, r2) n = t.size(dim) # assert ordered self.assertTrue( ( r1.values.narrow(dim, 1, n - 1) >= r1.values.narrow(dim, 0, n - 1) ).all() ) # assert that different segments does not mix, which can easily happen # if the stride is not handled correctly self.assertTrue( (t.unsqueeze(-1).transpose(dim, -1) == r1.values.unsqueeze(-1)) .any(dim=dim) .any(dim=-1) .all() ) # assert stride is preserved if self.device_type == "cuda": # FIXME: this behavior should be true for all cases, not # just the one specified in if condition self.assertEqual(r1.values.stride(), t.stride()) self.assertEqual(r1.indices.stride(), t.stride()) @onlyCUDA @dtypes(torch.float32) def test_sort_discontiguous(self, device, dtype): self._test_sort_discontiguous(device, dtype) @slowTest # this test is slow on CPU, but not on CUDA @onlyCPU @dtypes(torch.float32) def test_sort_discontiguous_slow(self, device, dtype): self._test_sort_discontiguous(device, dtype) @dtypes(torch.float32) def test_sort_1d_output_discontiguous(self, device, dtype): tensor = torch.randn(12, device=device, dtype=dtype)[:6] values = torch.empty_like(tensor)[::2] indices = torch.empty(18, device=device, dtype=torch.long)[::3] torch.sort(tensor, out=(values, indices)) values_cont, indices_cont = tensor.sort() self.assertEqual(indices, indices_cont) self.assertEqual(values, values_cont) @slowTest @onlyCPU @dtypes(*integral_types()) def test_sort_1d_parallel(self, device, dtype): low = 0 if dtype == torch.uint8 else -128 tensor = torch.randint( low=low, high=127, size=(100000,), device=device, dtype=dtype ) vals, _ = torch.sort(tensor, stable=True) self.assertEqual(True, torch.all(vals[:-1] <= vals[1:])) @dtypes(torch.float32) def test_topk_1d_output_discontiguous(self, device, dtype): tensor = torch.randn(12, device=device, dtype=dtype) values = torch.empty_like(tensor)[::2] indices = torch.empty(18, device=device, dtype=torch.long)[::3] for sorted in (True, False): # outputs of `sorted=False` test are not guaranteed to be the same, # but with current implementation they are torch.topk(tensor, 6, sorted=sorted, out=(values, indices)) values_cont, indices_cont = tensor.topk(6, sorted=sorted) self.assertEqual(indices, indices_cont) self.assertEqual(values, values_cont) # FIXME: remove torch.bool from unsupported types once support is added for cub sort @dtypes(*all_types_and(torch.half, torch.bfloat16)) def test_stable_sort_against_numpy(self, device, dtype): if dtype in floating_types_and(torch.float16, torch.bfloat16): inf = float("inf") neg_inf = -float("inf") nan = float("nan") else: if dtype != torch.bool: # no torch.iinfo support for torch.bool inf = torch.iinfo(dtype).max neg_inf = torch.iinfo(dtype).min else: inf = True neg_inf = ~inf # no nan for integral types, we use inf instead for simplicity nan = inf def generate_samples(): from itertools import chain, combinations for sizes in [(1025,), (10000,)]: size = sizes[0] # binary strings yield (torch.tensor([0, 1] * size, dtype=dtype, device=device), 0) if self.device_type == "cuda": return yield (torch.tensor([0, 1] * 100, dtype=dtype, device=device), 0) def repeated_index_fill(t, dim, idxs, vals): res = t for idx, val in zip(idxs, vals): res = res.index_fill(dim, idx, val) return res for sizes in [(1, 10), (10, 1), (10, 10), (10, 10, 10)]: size = min(*sizes) x = (torch.randn(*sizes, device=device) * size).to(dtype) yield (x, 0) # Generate tensors which are being filled at random locations # with values from the non-empty subsets of the set (inf, neg_inf, nan) # for each dimension. n_fill_vals = 3 # cardinality of (inf, neg_inf, nan) for dim in range(len(sizes)): idxs = ( torch.randint(high=size, size=(size // 10,)) for i in range(n_fill_vals) ) vals = (inf, neg_inf, nan) subsets = chain.from_iterable( combinations(list(zip(idxs, vals)), r) for r in range(1, n_fill_vals + 1) ) for subset in subsets: idxs_subset, vals_subset = zip(*subset) yield ( repeated_index_fill(x, dim, idxs_subset, vals_subset), dim, ) for sample, dim in generate_samples(): _, idx_torch = sample.sort(dim=dim, stable=True) if dtype is torch.bfloat16: sample_numpy = sample.float().cpu().numpy() else: sample_numpy = sample.cpu().numpy() idx_numpy = np.argsort(sample_numpy, axis=dim, kind="stable") self.assertEqual(idx_torch, idx_numpy) @dtypes(*all_types_and(torch.half, torch.bfloat16)) def test_msort(self, device, dtype): def test(shape): tensor = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9) if tensor.size() != torch.Size([]): if dtype is torch.bfloat16: expected = torch.from_numpy( np.msort(tensor.float().cpu().numpy()) ).bfloat16() else: expected = torch.from_numpy(np.msort(tensor.cpu().numpy())) else: expected = tensor # numpy.msort() does not support empty shapes tensor result = torch.msort(tensor) self.assertEqual(result, expected) out = torch.empty_like(result) torch.msort(tensor, out=out) self.assertEqual(out, expected) shapes = ( [], [0], [20], [1, 20], [30, 30], [10, 20, 30], ) for shape in shapes: test(shape) @skipIfTorchDynamo("Fails on python 3.11") @dtypes(torch.float) def test_sort_expanded_tensor(self, device, dtype): # https://github.com/pytorch/pytorch/issues/91420 data = torch.scalar_tensor(True, device=device, dtype=dtype) data = data.expand([1, 1, 1]) ref = torch.Tensor([[[True]]]) out = torch.sort(data, stable=True, dim=1, descending=True) expected = torch.sort(ref, stable=True, dim=1, descending=True) self.assertEqual(out, expected) data = torch.randn(4, 1, 10, device=device, dtype=dtype) data = data.expand([4, 8, 10]) ref = data.contiguous() out = torch.sort(data, stable=True, dim=1, descending=True) expected = torch.sort(ref, stable=True, dim=1, descending=True) self.assertEqual(out, expected) def test_topk(self, device): def topKViaSort(t, k, dim, dir): sorted, indices = t.sort(dim, dir) return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k) def compareTensors(t, res1, ind1, res2, ind2, dim): # Values should be exactly equivalent self.assertEqual(res1, res2, atol=0, rtol=0) # Indices might differ based on the implementation, since there is # no guarantee of the relative order of selection if not ind1.eq(ind2).all(): # To verify that the indices represent equivalent elements, # gather from the input using the topk indices and compare against # the sort indices vals = t.gather(dim, ind2) self.assertEqual(res1, vals, atol=0, rtol=0) def compare(t, k, dim, dir): topKVal, topKInd = t.topk(k, dim, dir, True) sortKVal, sortKInd = topKViaSort(t, k, dim, dir) compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim) SIZE = 100 t = torch.rand( random.randint(1, SIZE), random.randint(1, SIZE), random.randint(1, SIZE), device=device, ) for _kTries in range(3): for _dimTries in range(3): for transpose in (True, False): for dir in (True, False): testTensor = t if transpose: dim1 = random.randrange(t.ndimension()) dim2 = dim1 while dim1 == dim2: dim2 = random.randrange(t.ndimension()) testTensor = t.transpose(dim1, dim2) dim = random.randrange(testTensor.ndimension()) k = random.randint(1, testTensor.size(dim)) compare(testTensor, k, dim, dir) # This tests the code path where on CUDA, topk is implemented with sort. t = torch.randn((2, 100000), device=device) compare(t, 2000, 1, True) compare(t, 2000, 1, False) # This tests the code path where on CUDA, topk is implemented with multiblock t = torch.randn((2, 10000), device=device) compare(t, 2000, 1, True) compare(t, 2000, 1, False) def test_topk_quantized_scalar_input(self): # Calling topk on a quantized scalar input used to segfault, # see https://github.com/pytorch/pytorch/issues/116324 x = torch.quantize_per_tensor(torch.randn(()), 0.1, 10, torch.qint8) x.topk(1) def test_topk_arguments(self, device): q = torch.randn(10, 2, 10, device=device) # Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1) self.assertRaises(TypeError, lambda: q.topk(4, True)) def test_unique_dim(self, device): self.assertFalse(hasattr(torch, "unique_dim")) def run_test(device, dtype): x = torch.tensor( [ [[1.0, 1.0], [0.0, 1.0], [2.0, 1.0], [0.0, 1.0]], [[1.0, 1.0], [0.0, 1.0], [2.0, 1.0], [0.0, 1.0]], ], dtype=dtype, device=device, ) x_empty = torch.empty(5, 0, dtype=dtype, device=device) x_ill_formed_empty = torch.empty(5, 0, 0, dtype=dtype, device=device) x_ill_formed_empty_another = torch.empty( 5, 0, 5, dtype=dtype, device=device ) if dtype in floating_types_and(torch.float16, torch.bfloat16): x_nan = torch.tensor( [float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device, ) expected_unique_dim0 = torch.tensor( [[[1.0, 1.0], [0.0, 1.0], [2.0, 1.0], [0.0, 1.0]]], dtype=dtype, device=device, ) expected_inverse_dim0 = torch.tensor([0, 0]) expected_counts_dim0 = torch.tensor([2]) expected_unique_dim1 = torch.tensor( [ [[0.0, 1.0], [1.0, 1.0], [2.0, 1.0]], [[0.0, 1.0], [1.0, 1.0], [2.0, 1.0]], ], dtype=dtype, device=device, ) expected_unique_dim1_bool = torch.tensor( [[[False, True], [True, True]], [[False, True], [True, True]]], dtype=torch.bool, device=device, ) expected_inverse_dim1 = torch.tensor([1, 0, 2, 0]) expected_inverse_dim1_bool = torch.tensor([1, 0, 1, 0]) expected_counts_dim1 = torch.tensor([2, 1, 1]) expected_counts_dim1_bool = torch.tensor([2, 2]) expected_unique_dim2 = torch.tensor( [ [[1.0, 1.0], [0.0, 1.0], [2.0, 1.0], [0.0, 1.0]], [[1.0, 1.0], [0.0, 1.0], [2.0, 1.0], [0.0, 1.0]], ], dtype=dtype, device=device, ) expected_inverse_dim2 = torch.tensor([0, 1]) expected_counts_dim2 = torch.tensor([1, 1]) expected_unique_empty = torch.empty(5, 0, dtype=dtype, device=device) expected_inverse_empty = torch.tensor([], dtype=torch.long, device=device) expected_counts_empty = torch.tensor([], dtype=torch.long, device=device) if dtype in floating_types_and(torch.float16, torch.bfloat16): expected_unique_nan = torch.tensor( [float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device, ) expected_inverse_nan = torch.tensor( [0, 1, 1, 2, 3, 4], dtype=torch.long, device=device ) expected_counts_nan = torch.tensor( [1, 2, 1, 1, 1], dtype=torch.long, device=device ) # dim0 x_unique = torch.unique(x, dim=0) self.assertEqual(expected_unique_dim0, x_unique) x_unique, x_inverse = torch.unique(x, return_inverse=True, dim=0) self.assertEqual(expected_unique_dim0, x_unique) self.assertEqual(expected_inverse_dim0, x_inverse) x_unique, x_counts = torch.unique( x, return_inverse=False, return_counts=True, dim=0 ) self.assertEqual(expected_unique_dim0, x_unique) self.assertEqual(expected_counts_dim0, x_counts) x_unique, x_inverse, x_counts = torch.unique( x, return_inverse=True, return_counts=True, dim=0 ) self.assertEqual(expected_unique_dim0, x_unique) self.assertEqual(expected_inverse_dim0, x_inverse) self.assertEqual(expected_counts_dim0, x_counts) # dim1 x_unique = torch.unique(x, dim=1) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) else: self.assertEqual(expected_unique_dim1, x_unique) x_unique, x_inverse = torch.unique(x, return_inverse=True, dim=1) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) self.assertEqual(expected_inverse_dim1_bool, x_inverse) else: self.assertEqual(expected_unique_dim1, x_unique) self.assertEqual(expected_inverse_dim1, x_inverse) x_unique, x_counts = torch.unique( x, return_inverse=False, return_counts=True, dim=1 ) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) self.assertEqual(expected_counts_dim1_bool, x_counts) else: self.assertEqual(expected_unique_dim1, x_unique) self.assertEqual(expected_counts_dim1, x_counts) x_unique, x_inverse, x_counts = torch.unique( x, return_inverse=True, return_counts=True, dim=1 ) if x.dtype == torch.bool: self.assertEqual(expected_unique_dim1_bool, x_unique) self.assertEqual(expected_inverse_dim1_bool, x_inverse) self.assertEqual(expected_counts_dim1_bool, x_counts) else: self.assertEqual(expected_unique_dim1, x_unique) self.assertEqual(expected_inverse_dim1, x_inverse) self.assertEqual(expected_counts_dim1, x_counts) # dim2 x_unique = torch.unique(x, dim=2) self.assertEqual(expected_unique_dim2, x_unique) x_unique, x_inverse = torch.unique(x, return_inverse=True, dim=2) self.assertEqual(expected_unique_dim2, x_unique) self.assertEqual(expected_inverse_dim2, x_inverse) x_unique, x_counts = torch.unique( x, return_inverse=False, return_counts=True, dim=2 ) self.assertEqual(expected_unique_dim2, x_unique) self.assertEqual(expected_counts_dim2, x_counts) x_unique, x_inverse, x_counts = torch.unique( x, return_inverse=True, return_counts=True, dim=2 ) self.assertEqual(expected_unique_dim2, x_unique) self.assertEqual(expected_inverse_dim2, x_inverse) self.assertEqual(expected_counts_dim2, x_counts) # test empty tensor x_unique, x_inverse, x_counts = torch.unique( x_empty, return_inverse=True, return_counts=True, dim=1 ) self.assertEqual(expected_unique_empty, x_unique) self.assertEqual(expected_inverse_empty, x_inverse) self.assertEqual(expected_counts_empty, x_counts) # test tensor with nan if dtype in floating_types_and(torch.float16, torch.bfloat16): x_unique, x_inverse, x_counts = torch.unique( x_nan, return_inverse=True, return_counts=True, dim=0 ) self.assertEqual(expected_unique_nan, x_unique) self.assertEqual(expected_inverse_nan, x_inverse) self.assertEqual(expected_counts_nan, x_counts) # test not a well formed tensor # Checking for runtime error, as this is the expected behaviour with self.assertRaises(RuntimeError): torch.unique( x_ill_formed_empty, return_inverse=True, return_counts=True, dim=1 ) # test along dim2 with self.assertRaises(RuntimeError): torch.unique( x_ill_formed_empty_another, return_inverse=True, return_counts=True, dim=2, ) # test consecutive version y = torch.tensor( [ [0, 1], [0, 1], [0, 1], [1, 2], [1, 2], [3, 4], [0, 1], [0, 1], [3, 4], [1, 2], ], dtype=dtype, device=device, ) # test tensor with nan if dtype in floating_types_and(torch.float16, torch.bfloat16): y_nan = torch.tensor( [float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device, ) expected_y_unique = torch.tensor( [[0, 1], [1, 2], [3, 4], [0, 1], [3, 4], [1, 2]], dtype=dtype, device=device, ) expected_y_inverse = torch.tensor( [0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=torch.int64, device=device ) expected_y_counts = torch.tensor( [3, 2, 1, 2, 1, 1], dtype=torch.int64, device=device ) expected_y_inverse_bool = torch.tensor( [0, 0, 0, 1, 1, 1, 2, 2, 3, 3], dtype=torch.int64, device=device ) expected_y_counts_bool = torch.tensor( [3, 3, 2, 2], dtype=torch.int64, device=device ) if dtype in floating_types_and(torch.float16, torch.bfloat16): expected_y_unique_nan = torch.tensor( [float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device, ) expected_y_inverse_nan = torch.tensor( [0, 1, 1, 2, 3, 4], dtype=torch.long, device=device ) expected_y_counts_nan = torch.tensor( [1, 2, 1, 1, 1], dtype=torch.long, device=device ) y_unique, y_inverse, y_counts = torch.unique_consecutive( y, return_inverse=True, return_counts=True, dim=0 ) if x.dtype == torch.bool: self.assertEqual(expected_y_inverse_bool, y_inverse) self.assertEqual(expected_y_counts_bool, y_counts) else: self.assertEqual(expected_y_inverse, y_inverse) self.assertEqual(expected_y_counts, y_counts) # test tensor with nan if dtype in floating_types_and(torch.float16, torch.bfloat16): y_unique, y_inverse, y_counts = torch.unique_consecutive( y_nan, return_inverse=True, return_counts=True, dim=0 ) self.assertEqual(expected_y_unique_nan, y_unique) self.assertEqual(expected_y_inverse_nan, y_inverse) self.assertEqual(expected_y_counts_nan, y_counts) # Test dim is sorted same as NumPy with dims >= 3 x = torch.tensor( [ [ [[1, 0, 1, 0, 1, 1], [0, 1, 1, 0, 1, 1]], [[0, 1, 1, 0, 0, 1], [0, 0, 0, 1, 0, 0]], ], [ [[0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 1, 1]], [[0, 0, 1, 1, 0, 1], [1, 1, 0, 0, 0, 0]], ], ], dtype=dtype, device=device, ) xn = x.cpu().numpy() for d in range(x.dim()): t = torch.unique(x, dim=d) n = np.unique(xn, axis=d) self.assertEqual(t.cpu().numpy(), n) run_test(device, torch.float) run_test(device, torch.double) run_test(device, torch.long) run_test(device, torch.uint8) run_test(device, torch.bool) @onlyCUDA def test_topk_noncontiguous_gpu(self, device): # test different topk paths on cuda single_block_t = torch.randn(20, device=device)[::2] multi_block_t = torch.randn(20000, device=device)[::2] sort_t = torch.randn(200000, device=device)[::2] for t in (single_block_t, multi_block_t, sort_t): for k in (5, 2000, 10000): if k >= t.shape[0]: continue top1, idx1 = t.topk(k) top2, idx2 = t.contiguous().topk(k) self.assertEqual(top1, top2) self.assertEqual(idx1, idx2) def _test_topk_dtype(self, device, dtype, integral, size): if integral: a = torch.randint( torch.iinfo(dtype).min, torch.iinfo(dtype).max, size=(size,), dtype=dtype, device=device, ) else: a = torch.randn(size=(size,), dtype=dtype, device=device) sort_topk = a.sort()[0][-(size // 2) :].flip(0) topk = a.topk(size // 2) self.assertEqual(sort_topk, topk[0]) # check values self.assertEqual(sort_topk, a[topk[1]]) # check indices @dtypes(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64) def test_topk_integral(self, device, dtype): small = 10 large = 4096 verylarge = 8192 # multi_block topk on cuda for curr_size in (small, large, verylarge): self._test_topk_dtype(device, dtype, True, curr_size) @dtypes(torch.bfloat16, torch.half) def test_topk_lower_precision(self, device, dtype): small = 10 large = 4096 verylarge = 8192 # multi_block topk on cuda for curr_size in (small, large, verylarge): self._test_topk_dtype(device, dtype, False, curr_size) @dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16)) @dtypes(torch.float, torch.double, torch.bfloat16, torch.half) def test_topk_nonfinite(self, device, dtype): x = torch.tensor( [float("nan"), float("inf"), 1e4, 0, -1e4, -float("inf")], device=device, dtype=dtype, ) val, idx = x.topk(4) expect = torch.tensor( [float("nan"), float("inf"), 1e4, 0], device=device, dtype=dtype ) self.assertEqual(val, expect) self.assertEqual(idx, [0, 1, 2, 3]) val, idx = x.topk(4, largest=False) expect = torch.tensor([-float("inf"), -1e4, 0, 1e4], device=device, dtype=dtype) self.assertEqual(val, expect) self.assertEqual(idx, [5, 4, 3, 2]) def test_topk_4d(self, device): small = 128 large = 8192 for size in (small, large): x = torch.ones(2, size, 2, 2, device=device) x[:, 1, :, :] *= 2.0 x[:, 10, :, :] *= 1.5 val, ind = torch.topk(x, k=2, dim=1) expected_ind = torch.ones(2, 2, 2, 2, dtype=torch.long, device=device) expected_ind[:, 1, :, :] = 10 expected_val = torch.ones(2, 2, 2, 2, device=device) expected_val[:, 0, :, :] *= 2.0 expected_val[:, 1, :, :] *= 1.5 self.assertEqual(val, expected_val, atol=0, rtol=0) self.assertEqual(ind, expected_ind, atol=0, rtol=0) @onlyNativeDeviceTypes @dtypesIfCUDA(*all_types_and(torch.bfloat16)) @dtypes(*all_types_and(torch.bfloat16, torch.half)) def test_topk_zero(self, device, dtype): # https://github.com/pytorch/pytorch/issues/49205 t = torch.rand(2, 2, device=device).to(dtype=dtype) val, idx = torch.topk(t, k=0, largest=False) self.assertEqual(val.size(), torch.Size([2, 0])) self.assertEqual(idx.size(), torch.Size([2, 0])) def _test_unique_scalar_empty(self, dtype, device, f): # test scalar x = torch.tensor(0, dtype=dtype, device=device) unique, inverse, counts = f(x, return_inverse=True, return_counts=True) expected_unique = torch.tensor([0], dtype=dtype, device=device) expected_inverse = torch.tensor(0, device=device) expected_counts = torch.tensor([1], device=device) self.assertEqual(unique, expected_unique) self.assertEqual(inverse, expected_inverse) self.assertEqual(counts, expected_counts) # test zero sized tensor x = torch.zeros((0, 0, 3), dtype=dtype, device=device) unique, inverse, counts = f(x, return_inverse=True, return_counts=True) expected_unique = torch.tensor([], dtype=dtype, device=device) expected_inverse = torch.empty((0, 0, 3), dtype=torch.long, device=device) expected_counts = torch.tensor([], dtype=torch.long, device=device) self.assertEqual(unique, expected_unique) self.assertEqual(inverse, expected_inverse) self.assertEqual(counts, expected_counts) def _test_unique_with_expects( self, device, dtype, f, x, expected_unique, expected_inverse, expected_counts, additional_shape, ): def ensure_tuple(x): if isinstance(x, torch.Tensor): return (x,) return x for return_inverse in [True, False]: for return_counts in [True, False]: # test with expected ret = ensure_tuple( f(x, return_inverse=return_inverse, return_counts=return_counts) ) self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts)) self.assertEqual(expected_unique, ret[0]) if return_inverse: self.assertEqual(expected_inverse, ret[1]) if return_counts: count_index = 1 + int(return_inverse) self.assertEqual(expected_counts, ret[count_index]) # tests per-element unique on a higher rank tensor. y = x.view(additional_shape) y_unique, y_inverse, y_counts = f( y, return_inverse=True, return_counts=True ) self.assertEqual(expected_unique, y_unique) self.assertEqual(expected_inverse.view(additional_shape), y_inverse) self.assertEqual(expected_counts, y_counts) @dtypesIfCPU(*all_types_and(torch.bool, torch.float16, torch.bfloat16)) @dtypes(*all_types_and(torch.half, torch.bool)) def test_unique(self, device, dtype): def ensure_tuple(x): if isinstance(x, torch.Tensor): return (x,) return x if dtype is torch.bool: x = torch.tensor( [True, False, False, False, True, False, True, False], dtype=torch.bool, device=device, ) expected_unique = torch.tensor( [False, True], dtype=torch.bool, device=device ) expected_inverse = torch.tensor( [1, 0, 0, 0, 1, 0, 1, 0], dtype=torch.long, device=device ) expected_counts = torch.tensor([5, 3], dtype=torch.long, device=device) else: x = torch.tensor([1, 2, 3, 2, 8, 5, 2, 3], dtype=dtype, device=device) expected_unique = torch.tensor([1, 2, 3, 5, 8], dtype=dtype, device=device) expected_inverse = torch.tensor([0, 1, 2, 1, 4, 3, 1, 2], device=device) expected_counts = torch.tensor([1, 3, 2, 1, 1], device=device) # test sorted unique fs = ( lambda x, **kwargs: torch.unique(x, sorted=True, **kwargs), lambda x, **kwargs: x.unique(sorted=True, **kwargs), ) x_sliced = torch.empty(x.size(0) * 2, dtype=dtype, device=device)[::2].copy_(x) xs = (x, x_sliced) for f, x in product(fs, xs): self._test_unique_with_expects( device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (2, 2, 2), ) self._test_unique_scalar_empty(dtype, device, f) # test unsorted unique fs = ( lambda x, **kwargs: torch.unique(x, sorted=False, **kwargs), lambda x, **kwargs: x.unique(sorted=False, **kwargs), ) for f, x in product(fs, xs): self._test_unique_scalar_empty(dtype, device, f) for return_inverse, return_counts in product((True, False), repeat=2): ret = ensure_tuple( f(x, return_inverse=return_inverse, return_counts=return_counts) ) self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts)) x_list = x.tolist() x_unique_list = ret[0].tolist() self.assertEqual(expected_unique.tolist(), sorted(x_unique_list)) if return_inverse: x_inverse_list = ret[1].tolist() for i, j in enumerate(x_inverse_list): self.assertEqual(x_list[i], x_unique_list[j]) if return_counts: count_index = 1 + int(return_inverse) x_counts_list = ret[count_index].tolist() for i, j in zip(x_unique_list, x_counts_list): count = 0 for k in x_list: if k == i: count += 1 self.assertEqual(j, count) @dtypesIfCPU(*all_types_and(torch.bool, torch.float16, torch.bfloat16)) @dtypes(*all_types_and(torch.half, torch.bool)) def test_unique_consecutive(self, device, dtype): if dtype is torch.bool: x = torch.tensor( [True, False, False, False, True, True, False, False, False], dtype=torch.bool, device=device, ) expected_unique = torch.tensor( [True, False, True, False], dtype=torch.bool, device=device ) expected_inverse = torch.tensor( [0, 1, 1, 1, 2, 2, 3, 3, 3], dtype=torch.long, device=device ) expected_counts = torch.tensor( [1, 3, 2, 3], dtype=torch.long, device=device ) else: x = torch.tensor([1, 2, 2, 2, 5, 5, 2, 2, 3], dtype=dtype, device=device) expected_unique = torch.tensor([1, 2, 5, 2, 3], dtype=dtype, device=device) expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4], device=device) expected_counts = torch.tensor([1, 3, 2, 2, 1], device=device) for f in [ torch.unique_consecutive, lambda x, **kwargs: x.unique_consecutive(**kwargs), ]: self._test_unique_with_expects( device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (3, 3), ) self._test_unique_scalar_empty(dtype, device, f) @dtypes(torch.double) def test_kthvalue(self, device, dtype): SIZE = 50 x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device) x0 = x.clone() k = random.randint(1, SIZE) res1val, res1ind = torch.kthvalue(x, k, keepdim=False) res2val, res2ind = torch.sort(x) self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0) self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0) # test use of result tensors k = random.randint(1, SIZE) res1val = torch.tensor([], dtype=dtype, device=device) res1ind = torch.tensor([], dtype=torch.long, device=device) torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind)) res2val, res2ind = torch.sort(x) self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0) self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0) # test non-default dim k = random.randint(1, SIZE) res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False) res2val, res2ind = torch.sort(x, 0) self.assertEqual(res1val, res2val[k - 1], atol=0, rtol=0) self.assertEqual(res1ind, res2ind[k - 1], atol=0, rtol=0) # non-contiguous y = x.narrow(1, 0, 1) y0 = y.contiguous() k = random.randint(1, SIZE) res1val, res1ind = torch.kthvalue(y, k) res2val, res2ind = torch.kthvalue(y0, k) self.assertEqual(res1val, res2val, atol=0, rtol=0) self.assertEqual(res1ind, res2ind, atol=0, rtol=0) # non-contiguous [Reference: https://github.com/pytorch/pytorch/issues/45721] non_contig_t = torch.tensor([0, -1, 1, -2, 2], dtype=dtype, device=device)[::2] expected_val, expected_ind = non_contig_t.contiguous().kthvalue(2) non_contig_cpu_t = non_contig_t.cpu() expected_val_cpu, expected_ind_cpu = non_contig_cpu_t.kthvalue(2) out_val, out_ind = non_contig_t.kthvalue(2) self.assertEqual(expected_val, out_val, atol=0, rtol=0) self.assertEqual(expected_ind, out_ind, atol=0, rtol=0) self.assertEqual(expected_val_cpu, out_val, atol=0, rtol=0) self.assertEqual(expected_ind_cpu, out_ind, atol=0, rtol=0) # check that the input wasn't modified self.assertEqual(x, x0, atol=0, rtol=0) # simple test case (with repetitions) y = torch.tensor((3.0, 5, 4, 1, 1, 5), dtype=dtype, device=device) self.assertEqual(torch.kthvalue(y, 3)[0], 3, atol=0, rtol=0) self.assertEqual(torch.kthvalue(y, 2)[0], 1, atol=0, rtol=0) # simple test case (with NaN) SIZE = 50 x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device) x[torch.arange(SIZE), :, torch.randint(50, (50,))] = nan ks = [random.randint(1, SIZE), 1, SIZE, SIZE - 1] res2val, res2ind = torch.sort(x) for k in ks: res1val, res1ind = torch.kthvalue(x, k, keepdim=False) self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0) self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0) @dtypes(torch.float) @onlyNativeDeviceTypes # Fails on XLA def test_kthvalue_scalar(self, device, dtype): # Test scalar input (test case from https://github.com/pytorch/pytorch/issues/30818) # Tests that passing a scalar tensor or 1D tensor with 1 element work either way res = torch.tensor(2, device=device, dtype=dtype).kthvalue(1) ref = torch.tensor([2], device=device, dtype=dtype).kthvalue(1) self.assertEqual(res[0], ref[0].squeeze()) self.assertEqual(res[1], ref[1].squeeze()) @dtypes(*all_types()) @dtypesIfCUDA(*all_types_and(torch.half)) def test_isin(self, device, dtype): def assert_isin_equal(a, b): # Compare to the numpy reference implementation. x = torch.isin(a, b) a = a.cpu().numpy() if torch.is_tensor(a) else np.array(a) b = b.cpu().numpy() if torch.is_tensor(b) else np.array(b) y = np.isin(a, b) self.assertEqual(x, y) # multi-dim tensor, multi-dim tensor a = torch.arange(24, device=device, dtype=dtype).reshape([2, 3, 4]) b = torch.tensor( [[10, 20, 30], [0, 1, 3], [11, 22, 33]], device=device, dtype=dtype ) assert_isin_equal(a, b) # zero-dim tensor zero_d = torch.tensor(3, device=device, dtype=dtype) assert_isin_equal(zero_d, b) assert_isin_equal(a, zero_d) assert_isin_equal(zero_d, zero_d) # empty tensor empty = torch.tensor([], device=device, dtype=dtype) assert_isin_equal(empty, b) assert_isin_equal(a, empty) assert_isin_equal(empty, empty) # scalar assert_isin_equal(a, 6) assert_isin_equal(5, b) def define_expected(lst, invert=False): expected = torch.tensor(lst, device=device) if invert: expected = expected.logical_not() return expected # Adapted from numpy's in1d tests for mult in [1, 10]: for invert in [False, True]: a = torch.tensor([5, 7, 1, 2], device=device, dtype=dtype) b = torch.tensor([2, 4, 3, 1, 5] * mult, device=device, dtype=dtype) ec = define_expected([True, False, True, True], invert=invert) c = torch.isin(a, b, assume_unique=True, invert=invert) self.assertEqual(c, ec) a[0] = 8 ec = define_expected([False, False, True, True], invert=invert) c = torch.isin(a, b, assume_unique=True, invert=invert) self.assertEqual(c, ec) a[0], a[3] = 4, 8 ec = define_expected([True, False, True, False], invert=invert) c = torch.isin(a, b, assume_unique=True, invert=invert) self.assertEqual(c, ec) a = torch.tensor( [5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5], device=device, dtype=dtype, ) b = torch.tensor([2, 3, 4] * mult, device=device, dtype=dtype) ec = define_expected( [ False, True, False, True, True, True, True, True, True, False, True, False, False, False, ], invert=invert, ) c = torch.isin(a, b, invert=invert) self.assertEqual(c, ec) b = torch.tensor( [2, 3, 4] * mult + [5, 5, 4] * mult, device=device, dtype=dtype ) ec = define_expected( [ True, True, True, True, True, True, True, True, True, True, True, False, True, True, ], invert=invert, ) c = torch.isin(a, b, invert=invert) self.assertEqual(c, ec) a = torch.tensor([5, 7, 1, 2], device=device, dtype=dtype) b = torch.tensor([2, 4, 3, 1, 5] * mult, device=device, dtype=dtype) ec = define_expected([True, False, True, True], invert=invert) c = torch.isin(a, b, invert=invert) self.assertEqual(c, ec) a = torch.tensor([5, 7, 1, 1, 2], device=device, dtype=dtype) b = torch.tensor([2, 4, 3, 3, 1, 5] * mult, device=device, dtype=dtype) ec = define_expected([True, False, True, True, True], invert=invert) c = torch.isin(a, b, invert=invert) self.assertEqual(c, ec) a = torch.tensor([5, 5], device=device, dtype=dtype) b = torch.tensor([2, 2] * mult, device=device, dtype=dtype) ec = define_expected([False, False], invert=invert) c = torch.isin(a, b, invert=invert) self.assertEqual(c, ec) # multi-dimensional input case using sort-based algo for assume_unique in [False, True]: a = torch.arange(6, device=device, dtype=dtype).reshape([2, 3]) b = torch.arange(3, 30, device=device, dtype=dtype) ec = define_expected( [[False, False, False], [True, True, True]], invert=invert ) c = torch.isin(a, b, invert=invert, assume_unique=assume_unique) self.assertEqual(c, ec) def test_isin_different_dtypes(self, device): supported_types = all_types() if device == "cpu" else all_types_and(torch.half) for mult in [1, 10]: for assume_unique in [False, True]: for dtype1, dtype2 in product(supported_types, supported_types): a = torch.tensor([1, 2, 3], device=device, dtype=dtype1) b = torch.tensor([3, 4, 5] * mult, device=device, dtype=dtype2) ec = torch.tensor([False, False, True], device=device) c = torch.isin(a, b, assume_unique=assume_unique) self.assertEqual(c, ec) @onlyCUDA @dtypes(*all_types()) def test_isin_different_devices(self, device, dtype): a = torch.arange(6, device=device, dtype=dtype).reshape([2, 3]) b = torch.arange(3, 30, device="cpu", dtype=dtype) with self.assertRaises(RuntimeError): torch.isin(a, b) c = torch.arange(6, device="cpu", dtype=dtype).reshape([2, 3]) d = torch.arange(3, 30, device=device, dtype=dtype) with self.assertRaises(RuntimeError): torch.isin(c, d) @dtypes(*integral_types()) def test_sort_overflow(self, device, dtype): "Regression test for https://github.com/pytorch/pytorch/issues/111189" prev_num_threads = torch.get_num_threads() try: low = 0 if dtype == torch.uint8 else -1 x = torch.full((32768,), low, dtype=dtype, device=device) x[:100] = torch.iinfo(x.dtype).max torch.set_num_threads(1) uv = x.sort().values.unique() self.assertEqual(uv.size(0), 2) finally: torch.set_num_threads(prev_num_threads) instantiate_device_type_tests(TestSortAndSelect, globals()) if __name__ == "__main__": run_tests()