# Owner(s): ["module: tensor creation"] import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random import tempfile from typing import Any, Dict, List, Tuple from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest, set_default_dtype, set_default_tensor_type, TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo, xfailIfTorchDynamo) from torch.testing._internal.common_device_type import ( expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types, floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes, float_to_corresponding_complex_type_map ) from torch.utils.dlpack import to_dlpack # TODO: replace with make_tensor def _generate_input(shape, dtype, device, with_extremal): if shape == (): x = torch.tensor((), dtype=dtype, device=device) else: if dtype.is_floating_point or dtype.is_complex: # work around torch.randn not being implemented for bfloat16 if dtype == torch.bfloat16: x = torch.randn(*shape, device=device) * random.randint(30, 100) x = x.to(torch.bfloat16) else: x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100) x[torch.randn(*shape) > 0.5] = 0 if with_extremal and dtype.is_floating_point: # Use extremal values x[torch.randn(*shape) > 0.5] = float('nan') x[torch.randn(*shape) > 0.5] = float('inf') x[torch.randn(*shape) > 0.5] = float('-inf') elif with_extremal and dtype.is_complex: x[torch.randn(*shape) > 0.5] = complex('nan') x[torch.randn(*shape) > 0.5] = complex('inf') x[torch.randn(*shape) > 0.5] = complex('-inf') elif dtype == torch.bool: x = torch.zeros(shape, dtype=dtype, device=device) x[torch.randn(*shape) > 0.5] = True else: x = torch.randint(15, 100, shape, dtype=dtype, device=device) return x # TODO: replace with make_tensor def _rand_shape(dim, min_size, max_size): shape = [] for i in range(dim): shape.append(random.randint(min_size, max_size)) return tuple(shape) # Test suite for tensor creation ops # # Includes creation functions like torch.eye, random creation functions like # torch.rand, and *like functions like torch.ones_like. # DOES NOT INCLUDE view ops, which are tested in TestViewOps (currently in # test_torch.py) OR numpy interop (which is also still tested in test_torch.py) # # See https://pytorch.org/docs/main/torch.html#creation-ops class TestTensorCreation(TestCase): exact_dtype = True @onlyCPU @dtypes(torch.float) def test_diag_embed(self, device, dtype): x = torch.arange(3 * 4, dtype=dtype, device=device).view(3, 4) result = torch.diag_embed(x) expected = torch.stack([torch.diag(r) for r in x], 0) self.assertEqual(result, expected) result = torch.diag_embed(x, offset=1, dim1=0, dim2=2) expected = torch.stack([torch.diag(r, 1) for r in x], 1) self.assertEqual(result, expected) def test_cat_mem_overlap(self, device): x = torch.rand((1, 3), device=device).expand((6, 3)) y = torch.rand((3, 3), device=device) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.cat([y, y], out=x) @onlyNativeDeviceTypes def test_vander(self, device): x = torch.tensor([1, 2, 3, 5], device=device) self.assertEqual((0, 0), torch.vander(torch.tensor([]), 0).shape) with self.assertRaisesRegex(RuntimeError, "N must be non-negative."): torch.vander(x, N=-1) with self.assertRaisesRegex(RuntimeError, "x must be a one-dimensional tensor."): torch.vander(torch.stack((x, x))) @onlyNativeDeviceTypes @dtypes(torch.bool, torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.float, torch.double, torch.cfloat, torch.cdouble) def test_vander_types(self, device, dtype): if dtype is torch.uint8: # Note: no negative uint8 values X = [[1, 2, 3, 5], [0, 1 / 3, 1, math.pi, 3 / 7]] elif dtype is torch.bool: # Note: see https://github.com/pytorch/pytorch/issues/37398 # for why this is necessary. X = [[True, True, True, True], [False, True, True, True, True]] elif dtype in [torch.cfloat, torch.cdouble]: X = [[1 + 1j, 1 + 0j, 0 + 1j, 0 + 0j], [2 + 2j, 3 + 2j, 4 + 3j, 5 + 4j]] else: X = [[1, 2, 3, 5], [-math.pi, 0, 1 / 3, 1, math.pi, 3 / 7]] N = [None, 0, 1, 3] increasing = [False, True] for x, n, inc in product(X, N, increasing): numpy_dtype = torch_to_numpy_dtype_dict[dtype] pt_x = torch.tensor(x, device=device, dtype=dtype) np_x = np.array(x, dtype=numpy_dtype) pt_res = torch.vander(pt_x, increasing=inc) if n is None else torch.vander(pt_x, n, inc) np_res = np.vander(np_x, n, inc) self.assertEqual( pt_res, torch.from_numpy(np_res), atol=1e-3, rtol=0, exact_dtype=False) def test_cat_all_dtypes_and_devices(self, device): for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16, torch.chalf): x = torch.tensor([[1, 2], [3, 4]], dtype=dt, device=device) expected1 = torch.tensor([[1, 2], [3, 4], [1, 2], [3, 4]], dtype=dt, device=device) self.assertEqual(torch.cat((x, x), 0), expected1) expected2 = torch.tensor([[1, 2, 1, 2], [3, 4, 3, 4]], dtype=dt, device=device) self.assertEqual(torch.cat((x, x), 1), expected2) def test_fill_all_dtypes_and_devices(self, device): for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16, torch.chalf): for x in [torch.tensor((10, 10), dtype=dt, device=device), torch.empty(10000, dtype=dt, device=device)]: # large tensor numel = x.numel() bound = 100 if dt in (torch.uint8, torch.int8) else 2000 for n in range(-bound, bound, bound // 10): x.fill_(n) self.assertEqual(x, torch.tensor([n] * numel, dtype=dt, device=device)) self.assertEqual(dt, x.dtype) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_roll(self, device): numbers = torch.arange(1, 9, device=device) single_roll = numbers.roll(1, 0) expected = torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device) self.assertEqual(single_roll, expected, msg=f"{single_roll} did not equal expected result") roll_backwards = numbers.roll(-2, 0) expected = torch.tensor([3, 4, 5, 6, 7, 8, 1, 2], device=device) self.assertEqual(roll_backwards, expected, msg=f"{roll_backwards} did not equal expected result") data = numbers.view(2, 2, 2) rolled = data.roll(1, 0) expected = torch.tensor([5, 6, 7, 8, 1, 2, 3, 4], device=device).view(2, 2, 2) self.assertEqual(expected, rolled, msg=f"{rolled} did not equal expected result: {expected}") data = data.view(2, 4) # roll a loop until back where started loop_rolled = data.roll(2, 0).roll(4, 1) self.assertEqual(data, loop_rolled, msg=f"{loop_rolled} did not equal the original: {data}") # multiple inverse loops self.assertEqual(data, data.roll(-20, 0).roll(-40, 1)) self.assertEqual(torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device), numbers.roll(1, 0)) # test non-contiguous # strided equivalent to numbers.as_strided(size=(4, 2), stride=(1, 4)) strided = numbers.view(2, 4).transpose(0, 1) self.assertFalse(strided.is_contiguous(), "this test needs a non-contiguous tensor") expected = torch.tensor([4, 8, 1, 5, 2, 6, 3, 7]).view(4, 2) rolled = strided.roll(1, 0) self.assertEqual(expected, rolled, msg=f"non contiguous tensor rolled to {rolled} instead of {expected} ") # test roll with no dimension specified expected = numbers.roll(1, 0).view(2, 4) self.assertEqual(expected, data.roll(1), msg="roll with no dims should flatten and roll.") self.assertEqual(expected, data.roll(1, dims=None), msg="roll with no dims should flatten and roll.") # test roll over multiple dimensions expected = torch.tensor([[7, 8, 5, 6], [3, 4, 1, 2]], device=device) double_rolled = data.roll(shifts=(2, -1), dims=(1, 0)) self.assertEqual(double_rolled, expected, msg=f"should be able to roll over two dimensions, got {double_rolled}") self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=())) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=1)) # shifts/dims should align self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1, 2), dims=(1,))) self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1,), dims=(1, 2))) # test bool tensor t = torch.zeros(6, dtype=torch.bool, device=device) t[0] = True t[3] = True self.assertEqual(torch.tensor([False, True, False, False, True, False]), t.roll(1, 0)) # test complex tensor t = torch.tensor([1, 2 + 1j, 3.5, 4. + 2j, 5j, 6.], device=device) t[0] = 1 + 0.5j t[3] = 4. expected = torch.tensor([6., 1 + 0.5j, 2 + 1j, 3.5, 4., 5j], device=device) self.assertEqual(expected, t.roll(1, 0)) def test_diagflat(self, device): dtype = torch.float32 # Basic sanity test x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x) self.assertEqual(result, expected) # Test offset x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x, 17) expected = torch.diag(x, 17) self.assertEqual(result, expected) # Test where input has more than one dimension x = torch.randn((2, 3, 4), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) # Noncontig input x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0) self.assertFalse(x.is_contiguous()) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) # Complex number support result = torch.diagflat(torch.ones(4, dtype=torch.complex128)) expected = torch.eye(4, dtype=torch.complex128) self.assertEqual(result, expected) def test_block_diag(self, device): def block_diag_workaround(*arrs): arrs_expanded = [] for a in arrs: if a.dim() == 2: arrs_expanded.append(a) elif a.dim() == 1: arrs_expanded.append(a.expand(1, a.size(0))) elif a.dim() == 0: arrs_expanded.append(a.expand(1, 1)) shapes = torch.tensor([a.shape for a in arrs_expanded], device=device) out = torch.zeros( torch.sum(shapes, dim=0).tolist(), dtype=arrs_expanded[0].dtype, device=device ) r, c = 0, 0 for i, (rr, cc) in enumerate(shapes): out[r:r + rr, c:c + cc] = arrs_expanded[i] r += rr c += cc return out tensors = [ torch.rand((2, 2), device=device), torch.rand((2, 3), device=device), torch.rand(10, device=device), torch.rand((8, 1), device=device), torch.rand(1, device=device)[0] ] result = torch.block_diag(*tensors) result_check = block_diag_workaround(*tensors) self.assertEqual(result, result_check) tensor = torch.rand(1, device=device)[0] result = torch.block_diag(tensor) result_check = tensor.expand(1, 1) self.assertEqual(result, result_check) tensor = torch.rand(10, device=device) result = torch.block_diag(tensor) result_check = tensor.expand(1, tensor.size(0)) self.assertEqual(result, result_check) result = torch.block_diag() result_check = torch.empty(1, 0, device=device) self.assertEqual(result, result_check) self.assertEqual(result.device.type, 'cpu') test_dtypes = [ torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float32, torch.float64, torch.complex64, torch.complex128 ] # Test pairs of different dtypes for dtype1 in test_dtypes: for dtype2 in test_dtypes: a = torch.tensor(1, device=device, dtype=dtype1) b = torch.tensor(2, device=device, dtype=dtype2) result = torch.block_diag(a, b) result_dtype = torch.result_type(a, b) result_check = torch.tensor([[1, 0], [0, 2]], device=device, dtype=result_dtype) self.assertEqual(result, result_check) with self.assertRaisesRegex( RuntimeError, "torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 1 has 3 dimensions" ): torch.block_diag(torch.tensor(5), torch.tensor([[[6]]])) with self.assertRaisesRegex( RuntimeError, "torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 0 has 4 dimensions" ): torch.block_diag(torch.tensor([[[[6]]]])) if device != 'cpu': with self.assertRaisesRegex( RuntimeError, ( "torch.block_diag: input tensors must all be on the same device." " Input 0 is on device cpu and input 1 is on device " ) ): torch.block_diag(torch.ones(2, 2).cpu(), torch.ones(2, 2, device=device)) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") def test_block_diag_scipy(self, device): import scipy.linalg scipy_tensors_list = [ [ 1, [2], [], [3, 4, 5], [[], []], [[6], [7.3]] ], [ [[1, 2], [3, 4]], [1] ], [ [[4, 9], [7, 10]], [4.6, 9.12], [1j + 3] ], [] ] expected_torch_types = [ torch.float32, torch.int64, torch.complex64, torch.float32 ] expected_scipy_types = [ torch.float64, # windows scipy block_diag returns int32 types torch.int32 if IS_WINDOWS else torch.int64, torch.complex128, torch.float64 ] for scipy_tensors, torch_type, scipy_type in zip(scipy_tensors_list, expected_torch_types, expected_scipy_types): torch_tensors = [torch.tensor(t, device=device) for t in scipy_tensors] torch_result = torch.block_diag(*torch_tensors) self.assertEqual(torch_result.dtype, torch_type) scipy_result = torch.tensor( scipy.linalg.block_diag(*scipy_tensors), device=device ) self.assertEqual(scipy_result.dtype, scipy_type) scipy_result = scipy_result.to(torch_type) self.assertEqual(torch_result, scipy_result) @onlyNativeDeviceTypes @dtypes(torch.half, torch.float32, torch.float64) def test_torch_complex(self, device, dtype): real = torch.tensor([1, 2], device=device, dtype=dtype) imag = torch.tensor([3, 4], device=device, dtype=dtype) z = torch.complex(real, imag) complex_dtype = float_to_corresponding_complex_type_map[dtype] self.assertEqual(torch.tensor([1.0 + 3.0j, 2.0 + 4.0j], dtype=complex_dtype), z) @onlyNativeDeviceTypes @dtypes(torch.float32, torch.float64) def test_torch_polar(self, device, dtype): abs = torch.tensor([1, 2, -3, -4.5, 1, 1], device=device, dtype=dtype) angle = torch.tensor([math.pi / 2, 5 * math.pi / 4, 0, -11 * math.pi / 6, math.pi, -math.pi], device=device, dtype=dtype) z = torch.polar(abs, angle) complex_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 self.assertEqual(torch.tensor([1j, -1.41421356237 - 1.41421356237j, -3, -3.89711431703 - 2.25j, -1, -1], dtype=complex_dtype), z, atol=1e-5, rtol=1e-5) @onlyNativeDeviceTypes @dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.complex64, torch.complex128, torch.bool) def test_torch_complex_floating_dtype_error(self, device, dtype): for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) error = r"Expected both inputs to be Half, Float or Double tensors but " \ r"got [A-Za-z]+ and [A-Za-z]+" with self.assertRaisesRegex(RuntimeError, error): op(a, b) @onlyNativeDeviceTypes @dtypes(torch.float32, torch.float64) def test_torch_complex_same_dtype_error(self, device, dtype): def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' for op in (torch.complex, torch.polar): other_dtype = torch.float64 if dtype == torch.float32 else torch.float32 a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=other_dtype) error = f"Expected object of scalar type {dtype_name(dtype)} but got scalar type " \ f"{dtype_name(other_dtype)} for second argument" with self.assertRaisesRegex(RuntimeError, error): op(a, b) @onlyNativeDeviceTypes @dtypes(torch.float32, torch.float64) def test_torch_complex_out_dtype_error(self, device, dtype): def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' def complex_dtype_name(dtype): return 'ComplexFloat' if dtype == torch.complex64 else 'ComplexDouble' for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) out = torch.zeros(2, device=device, dtype=dtype) expected_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 error = f"Expected object of scalar type {complex_dtype_name(expected_dtype)} but got scalar type " \ f"{dtype_name(dtype)} for argument 'out'" with self.assertRaisesRegex(RuntimeError, error): op(a, b, out=out) def test_cat_empty_legacy(self, device): # FIXME: this is legacy behavior and should be removed # when we support empty tensors with arbitrary sizes dtype = torch.float32 x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((0,), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) def test_cat_empty(self, device): dtype = torch.float32 x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((4, 0, 32, 32), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) def test_cat_out(self, device): x = torch.zeros((0), device=device) y = torch.randn((4, 6), device=device) w = y.view(-1).clone() a = torch.cat([w[:2], w[4:6]]) b = torch.cat([w[:2], w[4:6]], out=w[6:10]) self.assertEqual(a, b) self.assertEqual(a, w[6:10]) self.assertEqual(w[:6], y.view(-1)[:6]) # Case: # Reference: https://github.com/pytorch/pytorch/issues/49878 for dim in [0, 1]: x = torch.zeros((10, 5, 2), device=device) random_length = random.randint(1, 4) y = x.narrow(dim, 0, x.shape[dim] - random_length) val = torch.full_like(y[0], 3., device=device) if dim == 0: self.assertTrue(y.is_contiguous()) else: self.assertFalse(y.is_contiguous()) torch.cat((val[None],) * y.shape[0], dim=0, out=y) expected_y = torch.cat((val[None],) * y.shape[0], dim=0) expected_x = torch.zeros((10, 5, 2), device=device) if dim == 0: expected_x[:x.shape[dim] - random_length, :, :] = expected_y elif dim == 1: expected_x[:, :x.shape[dim] - random_length, :] = expected_y self.assertEqual(y, expected_y) self.assertEqual(x, expected_x) @dtypes(*all_types_and_complex(), torch.uint16, torch.uint32, torch.uint64) def test_cat_out_fast_path_dim0_dim1(self, device, dtype): int_types = integral_types_and(torch.uint16, torch.uint32, torch.uint64) x = torch.zeros((0), device=device, dtype=dtype) if dtype in int_types: y = torch.randint(low=0, high=100, size=(4, 6), device=device, dtype=dtype) else: y = torch.randn((4, 6), device=device, dtype=dtype) # Test concat on dimension 0 w = y.view(-1).clone() a = torch.cat([w[:2], w[4:6]]) b = torch.cat([w[:2], w[4:6]], out=w[6:10]) # Note that there is no guarantee that slicing here will result in # contiguous tensors self.assertEqual(a, b) self.assertEqual(a, w[6:10]) self.assertEqual(w[:6], y.view(-1)[:6]) # If inputs are contiguous tensors, then fast concat paths will be invoked a_fastcat = torch.cat([w[:2].contiguous(), w[4:6].contiguous()]) self.assertEqual(a_fastcat, a) # Test concat on dimension 1 w = y.clone() w_slices = torch.tensor_split(w, (2, 4), dim=1) # Note that the tensor in w_slices[] here may not be a contiguous # tensor and we need to make sure this is not broken by fast concat b = torch.cat([w_slices[0], w_slices[1]], dim=1) expected_b = torch.index_select(w, 1, torch.tensor([0, 1, 2, 3], device=device)) self.assertEqual(b, expected_b) # If inputs are contiguous tensors, then fast concat paths will be invoked b_fastcat = torch.cat([w_slices[0].contiguous(), w_slices[1].contiguous()], dim=1) self.assertEqual(b_fastcat, expected_b) # Finally, we need to make sure backward is not broken # Integral types will not have grad if dtype not in int_types: a = torch.randn((4, 3), device=device, dtype=dtype, requires_grad=True) b = torch.randn((2, 3), device=device, dtype=dtype, requires_grad=True) c = torch.randn((5, 3), device=device, dtype=dtype, requires_grad=True) d = torch.randn((5, 2), device=device, dtype=dtype, requires_grad=True) expected_a_grad = torch.ones((4, 3), device=device, dtype=dtype) expected_b_grad = torch.ones((2, 3), device=device, dtype=dtype) expected_c_grad = torch.ones((5, 3), device=device, dtype=dtype) expected_d_grad = torch.ones((5, 2), device=device, dtype=dtype) # All the new tensors should be contiguous here. Let us make sure # to explicitly set them contiguous to enforce fast cat dim0_cat = torch.cat([a.contiguous(), b.contiguous()], dim=0) if dtype in complex_types(): dim0_cat.sum().abs().backward() self.assertEqual(a.grad.abs(), expected_a_grad.abs()) self.assertEqual(b.grad.abs(), expected_b_grad.abs()) else: dim0_cat.sum().backward() self.assertEqual(a.grad, expected_a_grad) self.assertEqual(b.grad, expected_b_grad) dim1_cat = torch.cat([c.contiguous(), d.contiguous()], dim=1) if dtype in complex_types(): dim1_cat.sum().abs().backward() self.assertEqual(c.grad.abs(), expected_c_grad.abs()) self.assertEqual(d.grad.abs(), expected_d_grad.abs()) else: dim1_cat.sum().backward() self.assertEqual(c.grad, expected_c_grad) self.assertEqual(d.grad, expected_d_grad) def test_cat_out_channels_last(self, device): x = torch.randn((4, 3, 8, 8)) y = torch.randn(x.shape) res1 = torch.cat((x, y)) z = res1.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), out=z) self.assertEqual(res1, res2) @onlyNativeDeviceTypes def test_cat_in_channels_last(self, device): for dim in range(4): x = torch.randn((4, 15, 8, 8), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y), dim=dim) x = x.clone().contiguous(memory_format=torch.channels_last) y = y.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), dim=dim) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(res1, res2) # Size larger than grain size. x = torch.randn((4, 15, 256, 256), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y), dim=dim) x = x.clone().contiguous(memory_format=torch.channels_last) y = y.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), dim=dim) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(res1, res2) @onlyNativeDeviceTypes def test_cat_preserve_channels_last(self, device): x = torch.randn((4, 3, 8, 8), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y)) res2 = torch.cat((x.contiguous(memory_format=torch.channels_last), y.contiguous(memory_format=torch.channels_last))) self.assertEqual(res1, res2) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) # discontiguous channels-last inputs x = torch.arange(24, dtype=torch.float, device=device).reshape(2, 2, 3, 2).to(memory_format=torch.channels_last) x1 = x[:, :, :2] x2 = x[:, :, 1:] res1 = torch.cat((x1, x2), dim=-1) res2 = torch.cat((x1.contiguous(), x2.contiguous()), dim=-1) self.assertEqual(res1, res2) self.assertTrue(res1.is_contiguous(memory_format=torch.channels_last)) @onlyCUDA def test_cat_out_memory_format(self, device): inp_size = (4, 4, 4, 4) expected_size = (8, 4, 4, 4) a_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.channels_last) a_cpu = torch.randn(inp_size, device='cpu').contiguous(memory_format=torch.channels_last) b_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.contiguous_format) b_cpu = torch.randn(inp_size, device='cpu').contiguous(memory_format=torch.contiguous_format) c_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.channels_last) # Case 1: if out= is the correct shape then the memory format of out= is respected out_cuda = torch.empty(expected_size, device=device).contiguous(memory_format=torch.contiguous_format) res1_cuda = torch.cat((a_cuda, b_cuda), out=out_cuda) out_cpu = torch.empty(expected_size, device='cpu').contiguous(memory_format=torch.contiguous_format) res1_cpu = torch.cat((a_cpu, b_cpu), out=out_cpu) self.assertTrue(res1_cuda.is_contiguous(memory_format=torch.contiguous_format)) self.assertTrue(res1_cpu.is_contiguous(memory_format=torch.contiguous_format)) # Case 2: if out= is not the correct shape then the output it is resized internally # - For both CPU and CUDA variants, it only propagates memory format if all the tensors have # the same memory format, otherwise it just uses contiguous_format as a default out_cuda = torch.empty((0), device=device).contiguous(memory_format=torch.contiguous_format) # a_cuda and b_cuda have different memory_format res2_cuda = torch.cat((a_cuda, b_cuda), out=out_cuda) out_cpu = torch.empty((0), device='cpu').contiguous(memory_format=torch.contiguous_format) res2_cpu = torch.cat((a_cpu, b_cpu), out=out_cpu) self.assertTrue(res2_cuda.is_contiguous(memory_format=torch.contiguous_format)) self.assertTrue(res2_cpu.is_contiguous(memory_format=torch.contiguous_format)) out_cuda = torch.empty((0), device=device).contiguous(memory_format=torch.contiguous_format) # a_cuda and c_cuda have same memory_format res3_cuda = torch.cat((a_cuda, c_cuda), out=out_cuda) self.assertTrue(res3_cuda.is_contiguous(memory_format=torch.channels_last)) @onlyCUDA def test_cat_stack_cross_devices(self, device): cuda = torch.randn((3, 3), device=device) cpu = torch.randn((3, 3), device='cpu') # Stack with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.stack((cuda, cpu)) with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.stack((cpu, cuda)) # TODO: reconcile with other cat tests # TODO: Compare with a NumPy reference instead of CPU @onlyCUDA def test_cat(self, device): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.rand(13, SIZE, SIZE, device=device).transpose(0, pos_dim) y = torch.rand(17, SIZE, SIZE, device=device).transpose(0, pos_dim) z = torch.rand(19, SIZE, SIZE, device=device).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0) x = torch.randn(20, SIZE, SIZE, device=device) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randn(1, SIZE, SIZE, device=device) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) # TODO: update this test to compare against NumPy instead of CPU @onlyCUDA @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_device_rounding(self, device, dtype): # test half-to-even a = [-5.8, -3.5, -2.3, -1.5, -0.5, 0.5, 1.5, 2.3, 3.5, 5.8] res = [-6., -4., -2., -2., 0., 0., 2., 2., 4., 6.] a_tensor = torch.tensor(a, device=device).round() res_tensor = torch.tensor(res, device='cpu') self.assertEqual(a_tensor, res_tensor) # Note: This test failed on XLA since its test cases are created by empty_strided which # doesn't support overlapping sizes/strides in XLA impl @skipIfTorchDynamo("TorchDynamo fails on this test for unknown reasons") @onlyNativeDeviceTypes def test_like_fn_stride_proparation_vs_tensoriterator_unary_op(self, device): # Test like functions against tensoriterator based unary operator (exp) to # make sure the returned tensor from like function follows the same stride propergation # rule as what tensoriterator does for unary operator. The like function's output strides # is computed on CPU side always, no need to test GPU here. def compare_helper_(like_fn, t): te = torch.exp(t) tl = like_fn(t) self.assertEqual(te.stride(), tl.stride()) self.assertEqual(te.size(), tl.size()) like_fns = [ lambda t, **kwargs: torch.zeros_like(t, **kwargs), lambda t, **kwargs: torch.ones_like(t, **kwargs), lambda t, **kwargs: torch.randint_like(t, 10, 100, **kwargs), lambda t, **kwargs: torch.randint_like(t, 100, **kwargs), lambda t, **kwargs: torch.randn_like(t, **kwargs), lambda t, **kwargs: torch.rand_like(t, **kwargs), lambda t, **kwargs: torch.full_like(t, 7, **kwargs), lambda t, **kwargs: torch.empty_like(t, **kwargs)] # dense non-overlapping tensor, # non-dense non-overlapping sliced tensor # non-dense non-overlapping gapped tensor # non-dense non-overlapping 0 strided tensor # non-dense overlapping general tensor # non-dense overlapping sliced tensor # non-dense overlapping gapped tensor # non-dense overlapping 0 strided tensor # non-dense overlapping equal strides tset = ( torch.randn(4, 3, 2, device=device), torch.randn(4, 3, 2, device=device)[:, :, ::2], torch.empty_strided((4, 3, 2), (10, 3, 1), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (10, 0, 3), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (10, 1, 2), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (4, 2, 1), device=device)[:, :, ::2].fill_(1.0), torch.empty_strided((4, 3, 2), (10, 1, 1), device=device).fill_(1.0), torch.empty_strided((4, 1, 1, 2), (10, 0, 0, 2), device=device).fill_(1.0), torch.empty_strided((4, 2, 3), (10, 3, 3), device=device).fill_(1.0)) for like_fn in like_fns: for t in tset: for p in permutations(range(t.dim())): tp = t.permute(p) compare_helper_(like_fn, tp) def _hvd_split_helper(self, torch_fn, np_fn, op_name, inputs, device, dtype, dim): dimension_error_message = op_name + " requires a tensor with at least " divisibiliy_error_message = op_name + " attempted to split along dimension " for shape, arg in inputs: direction = dim - (len(shape) == 1 and dim == 1) bound = dim + 2 * (dim == 0) + (dim == 2) error_expected = len(shape) < bound or (not isinstance(arg, list) and shape[direction] % arg != 0) t = make_tensor(shape, dtype=dtype, device=device) t_np = t.cpu().numpy() if not error_expected: self.assertEqual(torch_fn(t, arg), np_fn(t_np, arg)) else: self.assertRaises(RuntimeError, lambda: torch_fn(t, arg)) self.assertRaises(ValueError, lambda: np_fn(t, arg)) expected_error_message = dimension_error_message if len(shape) < bound else divisibiliy_error_message self.assertRaisesRegex(RuntimeError, expected_error_message, lambda: torch_fn(t, arg)) @onlyNativeDeviceTypes @dtypes(torch.long, torch.float32, torch.complex64) def test_hsplit(self, device, dtype): inputs = ( ((), 3), ((), [2, 4, 6]), ((6,), 2), ((6,), 4), ((6,), [2, 5]), ((6,), [7, 9]), ((3, 8), 4), ((3, 8), 5), ((3, 8), [1, 5]), ((3, 8), [3, 8]), ((5, 5, 5), 2), ((5, 5, 5), [1, 4]), ((5, 0, 5), 3), ((5, 5, 0), [2, 6]), ) self._hvd_split_helper(torch.hsplit, np.hsplit, "torch.hsplit", inputs, device, dtype, 1) @onlyNativeDeviceTypes @dtypes(torch.long, torch.float32, torch.complex64) def test_vsplit(self, device, dtype): inputs = ( ((6,), 2), ((6,), 4), ((6, 5), 2), ((6, 5), 4), ((6, 5), [1, 2, 3]), ((6, 5), [1, 5, 9]), ((6, 5, 5), 2), ((6, 0, 5), 2), ((5, 0, 5), [1, 5]), ) self._hvd_split_helper(torch.vsplit, np.vsplit, "torch.vsplit", inputs, device, dtype, 0) @onlyNativeDeviceTypes @dtypes(torch.long, torch.float32, torch.complex64) def test_dsplit(self, device, dtype): inputs = ( ((6,), 4), ((6, 6), 3), ((5, 5, 6), 2), ((5, 5, 6), 4), ((5, 5, 6), [1, 2, 3]), ((5, 5, 6), [1, 5, 9]), ((5, 5, 0), 2), ((5, 0, 6), 4), ((5, 0, 6), [1, 2, 3]), ((5, 5, 6), [1, 5, 9]), ) self._hvd_split_helper(torch.dsplit, np.dsplit, "torch.dsplit", inputs, device, dtype, 2) def _test_special_stacks(self, dim, at_least_dim, torch_fn, np_fn, device, dtype): # Test error for non-tuple argument t = torch.randn(10) with self.assertRaisesRegex(TypeError, "must be tuple of Tensors, not Tensor"): torch_fn(t) # Test error for a single array with self.assertRaisesRegex(TypeError, "must be tuple of Tensors, not Tensor"): torch_fn(t) # Test 0-D num_tensors = random.randint(1, 5) input_t = [torch.tensor(random.uniform(0, 10), device=device, dtype=dtype) for i in range(num_tensors)] actual = torch_fn(input_t) expected = np_fn([input.cpu().numpy() for input in input_t]) self.assertEqual(actual, expected) for ndims in range(1, 5): base_shape = list(_rand_shape(ndims, min_size=1, max_size=5)) for i in range(ndims): shape = list(base_shape) num_tensors = random.randint(1, 5) torch_input = [] # Create tensors with shape being different along one axis only for param in range(num_tensors): shape[i] = random.randint(1, 5) torch_input.append(_generate_input(tuple(shape), dtype, device, with_extremal=False)) # Determine if input tensors have valid dimensions. valid_dim = True for k in range(len(torch_input) - 1): for tdim in range(ndims): # Test whether all tensors have the same shape except in concatenating dimension # Unless the number of dimensions is less than the corresponding at_least function dimension # Since the original concatenating dimension would shift after applying at_least and would no # longer be the concatenating dimension if (ndims < at_least_dim or tdim != dim) and torch_input[k].size()[tdim] != torch_input[k + 1].size()[tdim]: valid_dim = False # Special case for hstack is needed since hstack works differently when ndims is 1 if valid_dim or (torch_fn is torch.hstack and ndims == 1): # Valid dimensions, test against numpy np_input = [input.cpu().numpy() for input in torch_input] actual = torch_fn(torch_input) expected = np_fn(np_input) self.assertEqual(actual, expected) else: # Invalid dimensions, test for error with self.assertRaisesRegex(RuntimeError, "Sizes of tensors must match except in dimension"): torch_fn(torch_input) with self.assertRaises(ValueError): np_input = [input.cpu().numpy() for input in torch_input] np_fn(np_input) @onlyNativeDeviceTypes @dtypes(*all_types_and_complex_and(torch.half)) def test_hstack_column_stack(self, device, dtype): ops = ((torch.hstack, np.hstack), (torch.column_stack, np.column_stack)) for torch_op, np_op in ops: self._test_special_stacks(1, 1, torch_op, np_op, device, dtype) # Test torch.column_stack with combinations of 1D and 2D tensors input one_dim_tensor = torch.arange(0, 10).to(dtype=dtype, device=device) two_dim_tensor = torch.arange(0, 100).to(dtype=dtype, device=device).reshape(10, 10) inputs = two_dim_tensor, one_dim_tensor, two_dim_tensor, one_dim_tensor torch_result = torch.column_stack(inputs) np_inputs = [input.cpu().numpy() for input in inputs] np_result = np.column_stack(np_inputs) self.assertEqual(np_result, torch_result) @onlyNativeDeviceTypes @dtypes(*all_types_and_complex_and(torch.half)) def test_vstack_row_stack(self, device, dtype): ops = ((torch.vstack, np.vstack), (torch.row_stack, np.vstack)) for torch_op, np_op in ops: self._test_special_stacks(0, 2, torch_op, np_op, device, dtype) for i in range(5): # Test dimension change for 1D tensor of size (N) and 2D tensor of size (1, N) n = random.randint(1, 10) input_a = _generate_input((n,), dtype, device, with_extremal=False) input_b = _generate_input((1, n), dtype, device, with_extremal=False) torch_input = [input_a, input_b] np_input = [input.cpu().numpy() for input in torch_input] actual = torch_op(torch_input) expected = np_op(np_input) self.assertEqual(actual, expected) @onlyNativeDeviceTypes @dtypes(*all_types_and_complex_and(torch.half)) def test_dstack(self, device, dtype): self._test_special_stacks(2, 3, torch.dstack, np.dstack, device, dtype) for i in range(5): # Test dimension change for 1D tensor of size (N), 2D tensor of size (1, N), and 3D tensor of size (1, N, 1) n = random.randint(1, 10) input_a = _generate_input((n,), dtype, device, with_extremal=False) input_b = _generate_input((1, n), dtype, device, with_extremal=False) input_c = _generate_input((1, n, 1), dtype, device, with_extremal=False) torch_input = [input_a, input_b, input_c] np_input = [input.cpu().numpy() for input in torch_input] actual = torch.dstack(torch_input) expected = np.dstack(np_input) self.assertEqual(actual, expected) # Test dimension change for 2D tensor of size (M, N) and 3D tensor of size (M, N, 1) m = random.randint(1, 10) n = random.randint(1, 10) input_a = _generate_input((m, n), dtype, device, with_extremal=False) input_b = _generate_input((m, n, 1), dtype, device, with_extremal=False) torch_input = [input_a, input_b] np_input = [input.cpu().numpy() for input in torch_input] actual = torch.dstack(torch_input) expected = np.dstack(np_input) self.assertEqual(actual, expected) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypes(torch.int32, torch.int64) def test_large_linspace(self, device, dtype): start = torch.iinfo(dtype).min end = torch.iinfo(dtype).max & ~0xfff steps = 15 x = torch.linspace(start, end, steps, dtype=dtype, device=device) self.assertGreater(x[1] - x[0], (end - start) / steps) @dtypes(torch.float32, torch.float64) def test_unpack_double(self, device, dtype): # Reference: https://github.com/pytorch/pytorch/issues/33111 vals = (2 ** 24 + 1, 2 ** 53 + 1, np.iinfo(np.int64).max, np.iinfo(np.uint64).max, np.iinfo(np.uint64).max + 1, -1e500, 1e500) for val in vals: t = torch.tensor(val, dtype=dtype, device=device) a = np.array(val, dtype=torch_to_numpy_dtype_dict[dtype]) self.assertEqual(t, torch.from_numpy(a)) def _float_to_int_conversion_helper(self, vals, device, dtype, refs=None): if refs is None: a = np.array(vals, dtype=np.float32).astype(torch_to_numpy_dtype_dict[dtype]) refs = torch.from_numpy(a) t = torch.tensor(vals, device=device, dtype=torch.float).to(dtype) self.assertEqual(refs, t.cpu()) # Checks that float->integer casts don't produce undefined behavior errors. # Note: In C++, casting from a floating value to an integral dtype # is undefined if the floating point value is not within the integral # dtype's dynamic range. This can (and should) cause undefined behavior # errors with UBSAN. These casts are deliberate in PyTorch, however, and # NumPy may have the same behavior. @onlyNativeDeviceTypes @unittest.skipIf(IS_MACOS or IS_JETSON, "Test is broken on MacOS and Jetson, \ see https://github.com/pytorch/pytorch/issues/38752") @unittest.skipIf(IS_PPC, "Test is broken on PowerPC, see https://github.com/pytorch/pytorch/issues/39671") @dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) def test_float_to_int_conversion_finite(self, device, dtype): min = torch.finfo(torch.float).min max = torch.finfo(torch.float).max # Note: CUDA max float -> integer conversion is divergent on some dtypes vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2, max) refs = None if self.device_type == 'cuda': if torch.version.hip: # HIP min float -> int64 conversion is divergent vals = (-2, -1.5, -.5, 0, .5, 1.5, 2) else: vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2) elif dtype == torch.uint8: # Note: CPU max float -> uint8 conversion is divergent vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2) # Note: numpy -2.0 or -1.5 -> uint8 conversion is undefined # see https://github.com/pytorch/pytorch/issues/97794 refs = (0, 254, 255, 0, 0, 0, 1, 2) self._float_to_int_conversion_helper(vals, device, dtype, refs) # Note: CUDA will fail this test on most dtypes, often dramatically. # NB: torch.uint16, torch.uint32, torch.uint64 excluded as this # nondeterministically fails, warning "invalid value encountered in cast" @onlyCPU @dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) def test_float_to_int_conversion_nonfinite(self, device, dtype): vals = (float('-inf'), float('inf'), float('nan')) self._float_to_int_conversion_helper(vals, device, dtype) @onlyNativeDeviceTypes def test_complex_type_conversions(self, device): dtypes = [torch.float, torch.complex64, torch.complex128] for from_type in dtypes: for to_type in dtypes: from_tensor = torch.randn(4, dtype=from_type, device=device) to_tensor = from_tensor.to(to_type) if from_type.is_complex and not to_type.is_complex: self.assertEqual(torch.real(from_tensor), to_tensor, exact_dtype=False) elif not from_type.is_complex and to_type.is_complex: self.assertEqual(from_tensor, torch.real(to_tensor), exact_dtype=False) self.assertEqual(torch.zeros_like(torch.imag(to_tensor)), torch.imag(to_tensor), exact_dtype=False) else: self.assertEqual(from_tensor, to_tensor, exact_dtype=False) @slowTest @onlyCPU def test_cat_big(self, device): SIZE1 = 6500 SIZE2 = 4500 concat_list = [] concat_list.append(torch.ones((SIZE1, 1024 * 512), dtype=torch.uint8, device=device)) concat_list.append(torch.ones((SIZE2, 1024 * 512), dtype=torch.uint8, device=device)) result = torch.cat(concat_list) self.assertEqual(result.size(0), SIZE1 + SIZE2) @onlyCPU @dtypes(torch.half, torch.double, torch.int) def test_cat2(self, device, dtype): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.randint(low=-100, high=100, size=(13, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) y = torch.randint(low=-100, high=100, size=(17, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) z = torch.randint(low=-100, high=100, size=(19, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0) x = torch.randint(low=-100, high=100, size=(20, SIZE, SIZE), device=device).to(dtype) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randint(low=-100, high=100, size=(1, SIZE, SIZE), device=device).to(dtype) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) # FIXME: Create an OpInfo-based tensor creation method test that verifies this for all tensor # creation methods and verify all dtypes and layouts @dtypes(torch.bool, torch.uint8, torch.int16, torch.int64, torch.float16, torch.float32, torch.complex64) def test_zeros_dtype_layout_device_match(self, device, dtype): layout = torch.strided t = torch.zeros((2, 3), device=device, dtype=dtype, layout=layout) self.assertIs(dtype, t.dtype) self.assertIs(layout, t.layout) self.assertEqual(torch.device(device), t.device) # TODO: update to work on CUDA, too @onlyCPU def test_stack(self, device): for dtype in (torch.half, torch.double, torch.int): x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) for dim in range(4): res = torch.stack((x, y, z), dim) res_neg = torch.stack((x, y, z), dim - 4) expected_size = x.size()[:dim] + (3,) + x.size()[dim:] self.assertEqual(res, res_neg) self.assertEqual(res.size(), expected_size) self.assertEqual(res.select(dim, 0), x, atol=0, rtol=0) self.assertEqual(res.select(dim, 1), y, atol=0, rtol=0) self.assertEqual(res.select(dim, 2), z, atol=0, rtol=0) # TODO: update to work on CUDA, too @onlyCPU def test_stack_out(self, device): for dtype in (torch.half, torch.double, torch.int): x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) for dim in range(4): expected_size = x.size()[:dim] + (3,) + x.size()[dim:] res_out = x.new(expected_size) res_neg_out = x.new(expected_size) res_out_dp = res_out.data_ptr() res_out_neg_dp = res_neg_out.data_ptr() torch.stack((x, y, z), dim, out=res_out) torch.stack((x, y, z), dim - 4, out=res_neg_out) self.assertEqual(res_out, res_neg_out) self.assertEqual(res_out.size(), expected_size) self.assertEqual(res_out_dp, res_out.data_ptr()) self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr()) self.assertEqual(res_out.select(dim, 0), x, atol=0, rtol=0) self.assertEqual(res_out.select(dim, 1), y, atol=0, rtol=0) self.assertEqual(res_out.select(dim, 2), z, atol=0, rtol=0) def test_repeat_interleave(self, device): x = torch.tensor([0, 1, 2, 3], device=device) expected = torch.tensor([1, 2, 2, 3, 3, 3], device=device) self.assertEqual(torch.repeat_interleave(x), expected) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4, device=device).reshape(2, 2)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4.0, device=device)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4], device=device)) y = torch.tensor([[1, 2], [3, 4]], device=device) y1_v1 = torch.repeat_interleave(y, 2) y1_v2 = torch.repeat_interleave(y, torch.tensor(2, device=device)) y1_v3 = torch.repeat_interleave(y, torch.tensor([2], device=device)) y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4], device=device) self.assertEqual(y1_v1, y1_expect) self.assertEqual(y1_v2, y1_expect) self.assertEqual(y1_v3, y1_expect) y2 = torch.repeat_interleave(y, 3, dim=1) y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]], device=device) self.assertEqual(y2, y2_expect) y3 = torch.repeat_interleave(y, torch.tensor([1, 2], device=device), dim=0) y3_expect = torch.tensor([[1, 2], [3, 4], [3, 4]], device=device) self.assertEqual(y3, y3_expect) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.tensor([1, 2, 3], device=device), dim=0) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.arange(9, device=device).reshape(3, 3), dim=0) # test zero sized dimension x = torch.zeros((5, 0), device=device) y = torch.repeat_interleave(x, repeats=3, dim=1) self.assertEqual(y, x.new_zeros(5, 0, device=device)) x = torch.tensor([], dtype=torch.int64, device=device) y = torch.repeat_interleave(x, x) self.assertEqual(y, x) # TODO: udpate to work on CUDA, too @onlyCPU def test_new_methods_requires_grad(self, device): size = (10,) test_cases = [ # method name, args ('new_full', [size, 1]), ('new_empty', [size]), ('new_zeros', [size]), ('new_ones', [size]), ] for method_name, args in test_cases: x = torch.randn(size) for requires_grad in [True, False]: x_new = x.__getattribute__(method_name)(*args, requires_grad=requires_grad) self.assertEqual(x_new.requires_grad, requires_grad) x = torch.randint(10, size) with self.assertRaisesRegex( RuntimeError, r'Only Tensors of floating point and complex dtype can require gradients'): x_new = x.__getattribute__(method_name)(*args, requires_grad=True) # TODO: update to work on CUDA, too? @onlyCPU def test_tensor_from_sequence(self, device): class MockSequence: def __init__(self, lst): self.lst = lst def __len__(self): return len(self.lst) def __getitem__(self, item): raise TypeError class GoodMockSequence(MockSequence): def __getitem__(self, item): return self.lst[item] bad_mock_seq = MockSequence([1.0, 2.0, 3.0]) good_mock_seq = GoodMockSequence([1.0, 2.0, 3.0]) with self.assertRaisesRegex(ValueError, 'could not determine the shape'): torch.tensor(bad_mock_seq) self.assertEqual(torch.tensor([1.0, 2.0, 3.0]), torch.tensor(good_mock_seq)) # TODO: update to work on CUDA, too? @onlyCPU @skipIfTorchDynamo("Not a TorchDynamo suitable test") def test_simple_scalar_cast(self, device): ok = [torch.tensor([1.5]), torch.zeros(1, 1, 1, 1)] ok_values = [1.5, 0] not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]]) for tensor, value in zip(ok, ok_values): self.assertEqual(int(tensor), int(value)) self.assertEqual(float(tensor), float(value)) self.assertEqual(complex(tensor), complex(value)) self.assertEqual(complex(torch.tensor(1.5j)), 1.5j) for tensor in not_ok: self.assertRaises(ValueError, lambda: int(tensor)) self.assertRaises(ValueError, lambda: float(tensor)) self.assertRaises(ValueError, lambda: complex(tensor)) self.assertRaises(RuntimeError, lambda: float(torch.tensor(1.5j))) self.assertRaises(RuntimeError, lambda: int(torch.tensor(1.5j))) # TODO: update to work on CUDA, too? @onlyCPU def test_offset_scalar_cast(self, device): x = torch.tensor([1., 2., 3.]) y = x[2:] self.assertEqual(int(y), 3) def test_meshgrid_empty(self): with self.assertRaisesRegex(RuntimeError, 'expects a non-empty TensorList'): torch.meshgrid() def test_meshgrid_unsupported_indexing(self): with self.assertRaisesRegex(RuntimeError, 'indexing must be one of "xy" or "ij"'): torch.meshgrid(torch.tensor([1, 2]), indexing='') def test_meshgrid_non_1d_tensor(self): with self.assertRaisesRegex(RuntimeError, 'Expected 0D or 1D tensor'): torch.meshgrid(torch.tensor([[1, 2], [3, 4]])) def test_meshgrid_inconsistent_dtype(self): with self.assertRaisesRegex( RuntimeError, 'expects all tensors to have the same dtype'): torch.meshgrid(torch.tensor([1], dtype=torch.int), torch.tensor([2], dtype=torch.float)) def test_meshgrid_inconsistent_device(self): with self.assertRaisesRegex( RuntimeError, 'expects all tensors to have the same device'): torch.meshgrid(torch.tensor([1], device='cpu'), torch.tensor([2], device='meta')) def test_meshgrid_warns_if_no_indexing(self): with self.assertWarnsOnceRegex( UserWarning, '.*will be required to pass the indexing arg.*'): torch.meshgrid(torch.tensor([1, 2])) def test_meshgrid_default_indexing(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid([a, b, c]) self.assertEqual(grid_a.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c.shape, torch.Size([1, 3, 2])) grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c) self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2])) expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64, device=device) expected_grid_b = torch.tensor([[[1, 1], [2, 2], [3, 3]]], device=device) expected_grid_c = torch.tensor([[[1, 2], [1, 2], [1, 2]]], device=device) self.assertTrue(grid_a.equal(expected_grid_a)) self.assertTrue(grid_b.equal(expected_grid_b)) self.assertTrue(grid_c.equal(expected_grid_c)) self.assertTrue(grid_a2.equal(expected_grid_a)) self.assertTrue(grid_b2.equal(expected_grid_b)) self.assertTrue(grid_c2.equal(expected_grid_c)) def test_meshgrid_xy_indexing(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid([a, b, c], indexing='xy') self.assertEqual(grid_a.shape, torch.Size([3, 1, 2])) self.assertEqual(grid_b.shape, torch.Size([3, 1, 2])) self.assertEqual(grid_c.shape, torch.Size([3, 1, 2])) grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c, indexing='xy') self.assertEqual(grid_a2.shape, torch.Size([3, 1, 2])) self.assertEqual(grid_b2.shape, torch.Size([3, 1, 2])) self.assertEqual(grid_c2.shape, torch.Size([3, 1, 2])) expected_grid_a = torch.ones(3, 1, 2, dtype=torch.int64, device=device) expected_grid_b = torch.tensor([[[1, 1]], [[2, 2]], [[3, 3]]], device=device) expected_grid_c = torch.tensor([[[1, 2]], [[1, 2]], [[1, 2]]], device=device) self.assertTrue(grid_a.equal(expected_grid_a)) self.assertTrue(grid_b.equal(expected_grid_b)) self.assertTrue(grid_c.equal(expected_grid_c)) self.assertTrue(grid_a2.equal(expected_grid_a)) self.assertTrue(grid_b2.equal(expected_grid_b)) self.assertTrue(grid_c2.equal(expected_grid_c)) def test_meshgrid_ij_indexing(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid([a, b, c], indexing='ij') self.assertEqual(grid_a.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c.shape, torch.Size([1, 3, 2])) grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c, indexing='ij') self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2])) expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64, device=device) expected_grid_b = torch.tensor([[[1, 1], [2, 2], [3, 3]]], device=device) expected_grid_c = torch.tensor([[[1, 2], [1, 2], [1, 2]]], device=device) self.assertTrue(grid_a.equal(expected_grid_a)) self.assertTrue(grid_b.equal(expected_grid_b)) self.assertTrue(grid_c.equal(expected_grid_c)) self.assertTrue(grid_a2.equal(expected_grid_a)) self.assertTrue(grid_b2.equal(expected_grid_b)) self.assertTrue(grid_c2.equal(expected_grid_c)) def test_meshgrid_ij_indexing_is_default(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid(a, b, c, indexing='ij') grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c) self.assertTrue(grid_a.equal(grid_a2)) self.assertTrue(grid_b.equal(grid_b2)) self.assertTrue(grid_c.equal(grid_c2)) @skipMeta def test_meshgrid_vs_numpy(self, device): # Shapes to the random tensors. Each line is a test case, and # each list within that line is the shape of a single # tensor. The shapes are restricted to 0D (represented by []) # and 1D tensors. cases = [ [[]], [[1], [1], [1]], [[], [], []], [[3], [5], [7]], [[3], [], [7]], [[11], [13]], [[15]], ] # We also need to test the different indexing modes. We can't # just enumerate them because we don't presently support the # same modes as numpy.meshgrid, nor does our default # correspond to their default. # # TODO Eliminate this and replace it with a list of all # supported indexing modes when we have full compatibility. indexing_correspondence = [ # No indexing in PyTorch corresponds to "ij" indexing in # NumPy. ({}, {'indexing': 'ij'}), # No indexing in NumPy corresponds to "xy" indexing in # PyTorch. ({'indexing': 'xy'}, {}), # "ij" and "xy" are implemented identically in both. ({'indexing': 'ij'}, {'indexing': 'ij'}), ({'indexing': 'xy'}, {'indexing': 'xy'}), ] for shapes, (torch_kwargs, numpy_kwargs) in product(cases, indexing_correspondence): with self.subTest(shapes=shapes, torch_kwargs=torch_kwargs, numpy_kwargs=numpy_kwargs): tensors = [make_tensor(shape, device=device, dtype=torch.int) for shape in shapes] torch_grids = torch.meshgrid(*tensors, **torch_kwargs) numpy_grids = np.meshgrid(*(tensor.cpu().numpy() for tensor in tensors), **numpy_kwargs) self.assertEqual(torch_grids, numpy_grids) def test_cartesian_prod(self, device): a = torch.tensor([1], device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) prod = torch.cartesian_prod(a, b, c) expected = torch.tensor(list(product([a], b, c)), device=device) self.assertEqual(expected, prod) # test 0 size input d = torch.empty(0, dtype=b.dtype, device=device) prod = torch.cartesian_prod(a, b, c, d) expected = torch.empty(0, 4, dtype=b.dtype, device=device) self.assertEqual(expected, prod) # test single input prod = torch.cartesian_prod(b) self.assertEqual(b, prod) def test_combinations(self, device): a = torch.tensor([1, 2, 3], device=device) c = torch.combinations(a, r=0) expected = torch.empty(0, dtype=a.dtype, device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=1) expected = torch.tensor(list(combinations(a, r=1)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=1, with_replacement=True) expected = torch.tensor(list(combinations_with_replacement(a, r=1)), device=device) self.assertEqual(c, expected) c = torch.combinations(a) expected = torch.tensor(list(combinations(a, r=2)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, with_replacement=True) expected = torch.tensor(list(combinations_with_replacement(a, r=2)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=3) expected = torch.tensor(list(combinations(a, r=3)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=4) expected = torch.empty(0, 4, dtype=a.dtype, device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=5) expected = torch.empty(0, 5, dtype=a.dtype, device=device) self.assertEqual(c, expected) # test empty imput a = torch.empty(0, device=device) c1 = torch.combinations(a) c2 = torch.combinations(a, with_replacement=True) expected = torch.empty(0, 2, dtype=a.dtype, device=device) self.assertEqual(c1, expected) self.assertEqual(c2, expected) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @skipMeta def test_linlogspace_mem_overlap(self, device): x = torch.rand(1, device=device).expand(10) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.linspace(1, 10, 10, out=x) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.logspace(1, 10, 10, out=x) def test_ctor_with_numpy_array(self, device): correct_dtypes = [ np.double, float, np.float16, np.int64, np.int32, np.int16, np.int8, np.uint8, bool, ] incorrect_byteorder = '>' if sys.byteorder == 'little' else '<' incorrect_dtypes = [incorrect_byteorder + t for t in ['d', 'f']] for dtype in correct_dtypes: array = np.array([1, 2, 3, 4], dtype=dtype) # Upcast tensor = torch.DoubleTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) # Downcast (sometimes) tensor = torch.FloatTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) tensor = torch.HalfTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) @dtypes(torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64) def test_random(self, device, dtype): # This test is flaky with p<=(2/(ub-lb))^200=6e-36 t = torch.empty(200, dtype=dtype, device=device) lb = 1 ub = 4 t.fill_(-1) t.random_(lb, ub) self.assertEqual(t.min(), lb) self.assertEqual(t.max(), ub - 1) t.fill_(-1) t.random_(ub) self.assertEqual(t.min(), 0) self.assertEqual(t.max(), ub - 1) def test_random_bool(self, device): size = 2000 t = torch.empty(size, dtype=torch.bool, device=device) t.fill_(False) t.random_() self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6) t.fill_(True) t.random_() self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6) # https://github.com/pytorch/pytorch/issues/126834 @xfailIfTorchDynamo def test_random_from_to_bool(self, device): size = 2000 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max min_val = 0 max_val = 1 froms = [int64_min_val, -42, min_val - 1, min_val, max_val, max_val + 1, 42] tos = [-42, min_val - 1, min_val, max_val, max_val + 1, 42, int64_max_val] for from_ in froms: for to_ in tos: t = torch.empty(size, dtype=torch.bool, device=device) if to_ > from_: if not (min_val <= from_ <= max_val): self.assertRaisesRegex( RuntimeError, "from is out of bounds", lambda: t.random_(from_, to_) ) elif not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: t.random_(from_, to_) range_ = to_ - from_ delta = 1 self.assertTrue(from_ <= t.to(torch.int).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.int).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) # NB: uint64 is broken because its max value is not representable in # int64_t, but this is what random expects @dtypes(*all_types_and(torch.bfloat16, torch.half, torch.uint16, torch.uint32)) def test_random_full_range(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype == torch.double: fp_limit = 2**53 elif dtype == torch.float: fp_limit = 2**24 elif dtype == torch.half: fp_limit = 2**11 elif dtype == torch.bfloat16: fp_limit = 2**8 else: fp_limit = 0 t = torch.empty(size, dtype=dtype, device=device) if dtype in [torch.float, torch.double, torch.half, torch.bfloat16]: from_ = int(max(-fp_limit, int64_min_val)) to_inc_ = int(min(fp_limit, int64_max_val)) else: from_ = int(max(torch.iinfo(dtype).min, int64_min_val)) to_inc_ = int(min(torch.iinfo(dtype).max, int64_max_val)) range_ = to_inc_ - from_ + 1 t.random_(from_, None) delta = max(1, alpha * range_) self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_inc_ - delta) < t.to(torch.double).max() <= to_inc_) # NB: uint64 is broken because its max value is not representable in # int64_t, but this is what random expects # https://github.com/pytorch/pytorch/issues/126834 @xfailIfTorchDynamo @dtypes(*all_types_and(torch.bfloat16, torch.half, torch .uint16, torch.uint32)) def test_random_from_to(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype in [torch.float, torch.double, torch.half]: min_val = int(max(torch.finfo(dtype).min, int64_min_val)) max_val = int(min(torch.finfo(dtype).max, int64_max_val)) froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.bfloat16: min_val = int64_min_val max_val = int64_max_val froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.uint8: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max froms = [int64_min_val, -42, min_val - 1, min_val, 42, max_val, max_val + 1] tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val] elif dtype == torch.int64: min_val = int64_min_val max_val = int64_max_val froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val] else: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max froms = [int64_min_val, min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1] tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val] if dtype == torch.double: fp_limit = 2**53 elif dtype == torch.float: fp_limit = 2**24 elif dtype == torch.half: fp_limit = 2**11 elif dtype == torch.bfloat16: fp_limit = 2**8 else: fp_limit = 0 for from_ in froms: for to_ in tos: t = torch.empty(size, dtype=dtype, device=device) if to_ > from_: if not (min_val <= from_ <= max_val): self.assertRaisesRegex( RuntimeError, "from is out of bounds", lambda: t.random_(from_, to_) ) elif not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: if dtype.is_floating_point and ( not (-fp_limit <= from_ <= fp_limit) or not (-fp_limit <= (to_ - 1) <= fp_limit)): if not (-fp_limit <= from_ <= fp_limit): self.assertWarnsRegex(UserWarning, "from is out of bounds", lambda: t.random_(from_, to_)) if not (-fp_limit <= (to_ - 1) <= fp_limit): self.assertWarnsRegex(UserWarning, "to - 1 is out of bounds", lambda: t.random_(from_, to_)) else: t.random_(from_, to_) range_ = to_ - from_ delta = max(1, alpha * range_) if dtype == torch.bfloat16: # Less strict checks because of rounding errors # TODO investigate rounding errors self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_) else: self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) # https://github.com/pytorch/pytorch/issues/126834 @xfailIfTorchDynamo @dtypes(*all_types_and(torch.bfloat16, torch.half, torch.uint16, torch.uint32)) def test_random_to(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype in [torch.float, torch.double, torch.half]: min_val = int(max(torch.finfo(dtype).min, int64_min_val)) max_val = int(min(torch.finfo(dtype).max, int64_max_val)) tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.bfloat16: min_val = int64_min_val max_val = int64_max_val tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.uint8: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val] elif dtype == torch.int64: min_val = int64_min_val max_val = int64_max_val tos = [-42, 0, 42, max_val] else: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val] from_ = 0 for to_ in tos: t = torch.empty(size, dtype=dtype, device=device) if to_ > from_: if not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: t.random_(to_) range_ = to_ - from_ delta = max(1, alpha * range_) if dtype == torch.bfloat16: # Less strict checks because of rounding errors # TODO investigate rounding errors self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_) else: self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(*all_types_and(torch.bfloat16, torch.half)) def test_random_default(self, device, dtype): size = 2000 alpha = 0.1 if dtype == torch.float: to_inc = 1 << 24 elif dtype == torch.double: to_inc = 1 << 53 elif dtype == torch.half: to_inc = 1 << 11 elif dtype == torch.bfloat16: to_inc = 1 << 8 else: to_inc = torch.iinfo(dtype).max t = torch.empty(size, dtype=dtype, device=device) t.random_() self.assertTrue(0 <= t.to(torch.double).min() < alpha * to_inc) self.assertTrue((to_inc - alpha * to_inc) < t.to(torch.double).max() <= to_inc) # TODO: this test should be updated @onlyNativeDeviceTypes def test_empty_full(self, device): torch_device = torch.device(device) device_type = torch_device.type dtypes = get_all_dtypes(include_half=False, include_bfloat16=False, include_complex32=True) if device_type == 'cpu': do_test_empty_full(self, dtypes, torch.strided, torch_device) if device_type == 'cuda': do_test_empty_full(self, dtypes, torch.strided, None) do_test_empty_full(self, dtypes, torch.strided, torch_device) # TODO: this test should be updated @suppress_warnings @onlyNativeDeviceTypes @deviceCountAtLeast(1) def test_tensor_device(self, devices): device_type = torch.device(devices[0]).type if device_type == 'cpu': self.assertEqual('cpu', torch.tensor(5).device.type) self.assertEqual('cpu', torch.ones((2, 3), dtype=torch.float32, device='cpu').device.type) self.assertEqual('cpu', torch.ones((2, 3), dtype=torch.float32, device='cpu:0').device.type) self.assertEqual('cpu', torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0').device.type) self.assertEqual('cpu', torch.tensor(np.random.randn(2, 3), device='cpu').device.type) if device_type == 'cuda': self.assertEqual('cuda:0', str(torch.tensor(5).cuda(0).device)) self.assertEqual('cuda:0', str(torch.tensor(5).cuda('cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(5, dtype=torch.int64, device=0).device)) self.assertEqual('cuda:0', str(torch.tensor(5, dtype=torch.int64, device='cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(np.random.randn(2, 3), device='cuda:0').device)) for device in devices: with torch.cuda.device(device): device_string = 'cuda:' + str(torch.cuda.current_device()) self.assertEqual(device_string, str(torch.tensor(5, dtype=torch.int64, device='cuda').device)) with self.assertRaises(RuntimeError): torch.tensor(5).cuda('cpu') with self.assertRaises(RuntimeError): torch.tensor(5).cuda('cpu:0') if len(devices) > 1: self.assertEqual('cuda:1', str(torch.tensor(5).cuda(1).device)) self.assertEqual('cuda:1', str(torch.tensor(5).cuda('cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(5, dtype=torch.int64, device=1).device)) self.assertEqual('cuda:1', str(torch.tensor(5, dtype=torch.int64, device='cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(np.random.randn(2, 3), device='cuda:1').device)) # TODO: this test should be updated @onlyNativeDeviceTypes def test_as_strided_neg(self, device): error = r'as_strided: Negative strides are not supported at the ' \ r'moment, got strides: \[-?[0-9]+(, -?[0-9]+)*\]' with self.assertRaisesRegex(RuntimeError, error): torch.as_strided(torch.ones(3, 3, device=device), (1, 1), (2, -1)) with self.assertRaisesRegex(RuntimeError, error): torch.as_strided(torch.ones(14, device=device), (2,), (-11,)) # TODO: this test should be updated def test_zeros(self, device): res1 = torch.zeros(100, 100, device=device) res2 = torch.tensor((), device=device) torch.zeros(100, 100, device=device, out=res2) self.assertEqual(res1, res2) boolTensor = torch.zeros(2, 2, device=device, dtype=torch.bool) expected = torch.tensor([[False, False], [False, False]], device=device, dtype=torch.bool) self.assertEqual(boolTensor, expected) halfTensor = torch.zeros(1, 1, device=device, dtype=torch.half) expected = torch.tensor([[0.]], device=device, dtype=torch.float16) self.assertEqual(halfTensor, expected) bfloat16Tensor = torch.zeros(1, 1, device=device, dtype=torch.bfloat16) expected = torch.tensor([[0.]], device=device, dtype=torch.bfloat16) self.assertEqual(bfloat16Tensor, expected) complexTensor = torch.zeros(2, 2, device=device, dtype=torch.complex64) expected = torch.tensor([[0., 0.], [0., 0.]], device=device, dtype=torch.complex64) self.assertEqual(complexTensor, expected) complexHalfTensor = torch.zeros(2, 2, device=device, dtype=torch.complex32) expected = torch.tensor([[0., 0.], [0., 0.]], device=device, dtype=torch.complex32) self.assertEqual(complexHalfTensor, expected) # TODO: this test should be updated def test_zeros_out(self, device): shape = (3, 4) out = torch.zeros(shape, device=device) torch.zeros(shape, device=device, out=out) # change the dtype, layout, device with self.assertRaises(RuntimeError): torch.zeros(shape, device=device, dtype=torch.int64, out=out) with self.assertRaises(RuntimeError): torch.zeros(shape, device=device, layout=torch.sparse_coo, out=out) # leave them the same self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, dtype=out.dtype, out=out)) self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, layout=torch.strided, out=out)) self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, out=out)) # TODO: this test should be updated def test_ones(self, device): res1 = torch.ones(100, 100, device=device) res2 = torch.tensor((), device=device) torch.ones(100, 100, device=device, out=res2) self.assertEqual(res1, res2) # test boolean tensor res1 = torch.ones(1, 2, device=device, dtype=torch.bool) expected = torch.tensor([[True, True]], device=device, dtype=torch.bool) self.assertEqual(res1, expected) # test chalf self.assertEqual(torch.ones(100, 100, device=device, dtype=torch.chalf), torch.ones(100, 100, device=device, dtype=torch.cfloat), exact_dtype=False) # TODO: this test should be updated @onlyCPU def test_constructor_dtypes(self, device): self.assertIs(torch.tensor([]).dtype, torch.get_default_dtype()) self.assertIs(torch.uint8, torch.ByteTensor.dtype) self.assertIs(torch.float32, torch.FloatTensor.dtype) self.assertIs(torch.float64, torch.DoubleTensor.dtype) with set_default_tensor_type('torch.FloatTensor'): self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) # only floating-point types are supported as the default type self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor')) with set_default_dtype(torch.float64): self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.DoubleStorage, torch.Storage) with set_default_tensor_type(torch.FloatTensor): self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) if torch.cuda.is_available(): with set_default_tensor_type(torch.cuda.FloatTensor): self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype) self.assertIs(torch.cuda.FloatStorage, torch.Storage) with set_default_dtype(torch.float64): self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.cuda.DoubleStorage, torch.Storage) # don't allow passing dtype to set_default_tensor_type self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32)) # don't allow passing dtype to set_default_dtype for t in all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.qint8): # only floating-point types are supported as the default type if t in ( torch.half, torch.float, torch.double, torch.bfloat16): with set_default_dtype(t): pass else: self.assertRaises(TypeError, lambda: torch.set_default_dtype(t)) # TODO: this test should be updated @onlyCPU def test_constructor_device_legacy(self, device): self.assertRaises(RuntimeError, lambda: torch.FloatTensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.FloatTensor(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.FloatTensor((2.0, 3.0), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cuda')) # Tensor constructor/new with Tensor argument shouldn't work with device specified i = torch.tensor([1], device='cpu') self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cpu')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cuda')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cuda')) x = torch.randn((3,), device='cpu') self.assertRaises(RuntimeError, lambda: x.new(device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cuda')) if torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor((2.0, 3.0), device='cpu')) # Tensor constructor/new with Tensor argument shouldn't work with device specified i = torch.tensor([1], device='cuda') self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cuda')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cpu')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cpu')) with set_default_tensor_type(torch.cuda.FloatTensor): self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cpu')) x = torch.randn((3,), device='cuda') self.assertRaises(RuntimeError, lambda: x.new(device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cpu')) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_tensor_factory(self, device): # TODO: This test probably doesn't make too much sense now that # torch.tensor has been established for a while; it makes more # sense to test the legacy behavior in terms of the new behavior expected = torch.Tensor([1, 1]) # test data res1 = torch.tensor([1, 1]) self.assertEqual(res1, expected, exact_dtype=False) res1 = torch.tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy res2 = torch.tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = torch.tensor(expected, dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy with numpy for dtype in [np.float64, np.int64, np.int8, np.uint8]: a = np.array([5.]).astype(dtype) res1 = torch.tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) # test boolean tensor a = torch.tensor([True, True, False, True, True], dtype=torch.bool) b = torch.tensor([-1, -1.1, 0, 1, 1.1], dtype=torch.bool) self.assertEqual(a, b) c = torch.tensor([-0.1, -1.1, 0, 1, 0.1], dtype=torch.bool) self.assertEqual(a, c) d = torch.tensor((-.3, 0, .3, 1, 3 / 7), dtype=torch.bool) e = torch.tensor((True, False, True, True, True), dtype=torch.bool) self.assertEqual(e, d) f = torch.tensor((-1, 0, -1.1, 1, 1.1), dtype=torch.bool) self.assertEqual(e, f) int64_max = torch.iinfo(torch.int64).max int64_min = torch.iinfo(torch.int64).min float64_max = torch.finfo(torch.float64).max float64_min = torch.finfo(torch.float64).min g_1 = torch.tensor((float('nan'), 0, int64_min, int64_max, int64_min - 1), dtype=torch.bool) self.assertEqual(e, g_1) g_2 = torch.tensor((int64_max + 1, 0, (int64_max + 1) * 2, (int64_max + 1) * 2 + 1, float64_min), dtype=torch.bool) self.assertEqual(e, g_2) g_3 = torch.tensor((float64_max, 0, float64_max + 1, float64_min - 1, float64_max + 1e291), dtype=torch.bool) self.assertEqual(e, g_3) h = torch.tensor([True, False, False, True, False, True, True], dtype=torch.bool) i = torch.tensor([1e-323, 1e-324, 0j, 1e-323j, 1e-324j, 1 + 2j, -1j], dtype=torch.bool) self.assertEqual(h, i) j = torch.tensor((True, True, True, True), dtype=torch.bool) k = torch.tensor((1e323, -1e323, float('inf'), -float('inf')), dtype=torch.bool) self.assertEqual(j, k) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_tensor_factory_copy_var(self, device): def check_copy(copy, is_leaf, requires_grad, data_ptr=None): if data_ptr is None: data_ptr = copy.data_ptr self.assertEqual(copy, source, exact_dtype=False) self.assertTrue(copy.is_leaf == is_leaf) self.assertTrue(copy.requires_grad == requires_grad) self.assertTrue(copy.data_ptr == data_ptr) source = torch.randn(5, 5, dtype=torch.double, requires_grad=True) # test torch.tensor() check_copy(torch.tensor(source), True, False) check_copy(torch.tensor(source, requires_grad=False), True, False) check_copy(torch.tensor(source, requires_grad=True), True, True) # test tensor.new_tensor() copy = torch.randn(1) check_copy(copy.new_tensor(source), True, False) check_copy(copy.new_tensor(source, requires_grad=False), True, False) check_copy(copy.new_tensor(source, requires_grad=True), True, True) # test torch.as_tensor() check_copy(torch.as_tensor(source), source.is_leaf, source.requires_grad, source.data_ptr) # not copy check_copy(torch.as_tensor(source, dtype=torch.float), False, True) # copy and keep the graph # TODO: this test should be updated @onlyCPU def test_tensor_factory_type_inference(self, device): def test_inference(default_dtype): default_complex_dtype = torch.complex64 if default_dtype == torch.float32 else torch.complex128 self.assertIs(default_dtype, torch.tensor(()).dtype) self.assertIs(default_dtype, torch.tensor(5.).dtype) self.assertIs(torch.int64, torch.tensor(5).dtype) self.assertIs(torch.bool, torch.tensor(True).dtype) self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype) self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype) self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype) self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype) self.assertIs(default_complex_dtype, torch.tensor(((5, 3 + 2j), (3, 5 + 4j))).dtype) self.assertIs(torch.float64, torch.tensor(np.array(())).dtype) self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype) if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows) self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype) else: self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype) self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype) self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype) self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype) self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype) for dtype in [torch.float64, torch.float32]: with set_default_dtype(dtype): test_inference(dtype) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_new_tensor(self, device): expected = torch.autograd.Variable(torch.ByteTensor([1, 1])) # test data res1 = expected.new_tensor([1, 1]) self.assertEqual(res1, expected) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy res2 = expected.new_tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertEqual(res2, expected, exact_dtype=False) self.assertIs(torch.int, res2.dtype) # test copy with numpy a = np.array([5.]) res1 = torch.tensor(a) res1 = res1.new_tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) if torch.cuda.device_count() >= 2: expected = expected.cuda(1) res1 = expected.new_tensor([1, 1]) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) res2 = expected.new_tensor(expected) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int, device=0) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), 0) res1 = expected.new_tensor(1) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor(1, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) # TODO: this test should be updated @onlyCPU def test_as_tensor(self, device): # from python data x = [[0, 1], [2, 3]] self.assertEqual(torch.tensor(x), torch.as_tensor(x)) self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32)) # python data with heterogeneous types z = [0, 'torch'] with self.assertRaisesRegex(TypeError, "invalid data type"): torch.tensor(z) torch.as_tensor(z) # python data with self-referential lists z = [0] z += [z] with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): torch.tensor(z) torch.as_tensor(z) z = [[1, 2], z] with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): torch.tensor(z) torch.as_tensor(z) # from tensor (doesn't copy unless type is different) y = torch.tensor(x) self.assertIs(y, torch.as_tensor(y)) self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32)) if torch.cuda.is_available(): self.assertIsNot(y, torch.as_tensor(y, device='cuda')) y_cuda = y.to('cuda') self.assertIs(y_cuda, torch.as_tensor(y_cuda)) self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda')) # doesn't copy for dtype in [np.float64, np.int64, np.int8, np.uint8]: n = np.random.rand(5, 6).astype(dtype) n_astensor = torch.as_tensor(n) self.assertEqual(torch.tensor(n), n_astensor) n_astensor[0][0] = 25.7 self.assertEqual(torch.tensor(n), n_astensor) # changing dtype causes copy n = np.random.rand(5, 6).astype(np.float32) n_astensor = torch.as_tensor(n, dtype=torch.float64) self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor) n_astensor[0][1] = 250.8 self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor) # changing device causes copy if torch.cuda.is_available(): n = np.random.randn(5, 6) n_astensor = torch.as_tensor(n, device='cuda') self.assertEqual(torch.tensor(n, device='cuda'), n_astensor) n_astensor[0][2] = 250.9 self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor) # TODO: this test should be updated @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @suppress_warnings @dtypesIfCPU(torch.float, torch.bfloat16, torch.float16) @dtypes(torch.float) def test_range(self, device, dtype): res1 = torch.range(0, 1, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.range(0, 1, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Check range for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) torch.range(0, 3, device=device, dtype=dtype, out=x.narrow(1, 1, 2)) res2 = torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=dtype) self.assertEqual(x, res2, atol=1e-16, rtol=0) # Check negative res1 = torch.tensor((1, 0), device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.range(1, 0, -1, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Equal bounds res1 = torch.ones(1, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.range(1, 1, -1, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) torch.range(1, 1, 1, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # TODO: this test should be updated @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_range_warning(self, device): with warnings.catch_warnings(record=True) as w: torch.range(0, 10, device=device) self.assertEqual(len(w), 1) # TODO: this test should be updated def test_arange(self, device): res = torch.tensor(range(10000), device=device) res1 = torch.arange(0, 10000, device=device) # Use a larger number so vectorized code can be triggered res2 = torch.tensor([], dtype=torch.int64, device=device) torch.arange(0, 10000, out=res2) self.assertEqual(res, res1, atol=0, rtol=0) self.assertEqual(res, res2, atol=0, rtol=0) # Vectorization on non-contiguous tensors res = torch.rand(3, 3, 300000, device=device).to(torch.int64) res = res.permute(2, 0, 1) torch.arange(0, 300000 * 3 * 3, out=res) self.assertEqual(res.flatten(), torch.arange(0, 300000 * 3 * 3, device=device)) # Check arange with only one argument res1 = torch.arange(10, device=device) res2 = torch.arange(0, 10, device=device) self.assertEqual(res1, res2, atol=0, rtol=0) # Check arange for non-contiguous tensors. x = torch.zeros(2, 3, device=device) torch.arange(0, 4, out=x.narrow(1, 1, 2)) res2 = torch.tensor(((0., 0., 1.), (0., 2., 3.)), device=device) self.assertEqual(x, res2, atol=1e-16, rtol=0) # Check negative res1 = torch.tensor((1., 0.), device=device) res2 = torch.tensor([], device=device) torch.arange(1, -1, -1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Equal bounds res1 = torch.ones(1, device=device) res2 = torch.tensor([], device=device) torch.arange(1, 0, -1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) torch.arange(1, 2, 1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # FloatTensor out = torch.tensor([], dtype=torch.float, device=device) res1 = torch.arange(0.6, 0.89, 0.1, out=out) self.assertEqual(res1, [0.6, 0.7, 0.8]) out = torch.tensor([], dtype=torch.float, device=device) res1 = torch.arange(1, 10, 0.3, out=out) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # DoubleTensor out = torch.tensor([], dtype=torch.double, device=device) res1 = torch.arange(0.6, 0.89, 0.1, out=out) self.assertEqual(res1, [0.6, 0.7, 0.8]) out = torch.tensor([], dtype=torch.double, device=device) res1 = torch.arange(1, 10, 0.3, out=out) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # Bool Input matching numpy semantics r = torch.arange(True, device=device) self.assertEqual(r[0], 0) r2 = torch.arange(False, device=device) self.assertEqual(len(r2), 0) self.assertEqual(r.dtype, torch.int64) self.assertEqual(r2.dtype, torch.int64) # Check that it's exclusive r = torch.arange(0, 5, device=device) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 5) r = torch.arange(0, 6, 3, device=device) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 3) self.assertEqual(r.numel(), 2) r = torch.arange(0, 5, 2, device=device) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 3) r = torch.arange(0, -5, -2, device=device) self.assertEqual(r.min(), -4) self.assertEqual(r.max(), 0) self.assertEqual(r.numel(), 3) r1 = torch.arange(0, 5 + 1e-6, device=device) # NB: without the dtype, we'll infer output type to be int64 r2 = torch.arange(0, 5, dtype=torch.float32, device=device) r3 = torch.arange(0, 5 - 1e-6, device=device) self.assertEqual(r1[:-1], r2, atol=0, rtol=0) self.assertEqual(r2, r3, atol=0, rtol=0) r1 = torch.arange(10, -1 + 1e-6, -1, device=device) # NB: without the dtype, we'll infer output type to be int64 r2 = torch.arange(10, -1, -1, dtype=torch.float32, device=device) r3 = torch.arange(10, -1 - 1e-6, -1, device=device) self.assertEqual(r1, r2, atol=0, rtol=0) self.assertEqual(r2, r3[:-1], atol=0, rtol=0) w = 1449629115440469 r = torch.arange(0, 100 * w, w, device=device) self.assertEqual(r.numel(), 100) # Test Rounding Errors line = torch.zeros(size=(1, 49), device=device) self.assertWarnsRegex(UserWarning, 'The out tensor will be resized', lambda: torch.arange(-1, 1, 2. / 49, dtype=torch.float32, out=line)) self.assertEqual(line.shape, [50]) x = torch.empty(1).expand(10) self.assertRaises(RuntimeError, lambda: torch.arange(10, out=x)) msg = "unsupported range" self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(-5, float('nan'), device=device)) # check with step size self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('-inf'), -1, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'), device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('-inf'), 10, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), 10, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'), device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), device=device)) self.assertRaisesRegex( RuntimeError, "overflow", lambda: torch.arange(1.175494351e-38, 3.402823466e+38, device=device)) # check that it holds a consistent output shape on precision-cornered step sizes d = torch.arange(-4.0, 4.0, 0.01, dtype=torch.float32, device=device) self.assertEqual(d.shape[0], 800) # TODO: this test should be updated @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991") @onlyCPU def test_arange_inference(self, device): # end only self.assertIs(torch.float32, torch.arange(1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype) # start, end, [step] self.assertIs(torch.float32, torch.arange(1., 3).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype) self.assertIs(torch.float32, torch.arange(1, 3.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype) self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16), torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1, 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype) self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3), torch.tensor(1, dtype=torch.int16)).dtype) # cannot call storage() on meta tensor @skipMeta def test_empty_strided(self, device): for shape in [(2, 3, 4), (0, 2, 0)]: # some of these cases are pretty strange, just verifying that if as_strided # allows them then empty_strided can as well. for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]: empty_strided = torch.empty_strided(shape, strides, device=device) # as_strided checks the storage size is big enough to support such a strided tensor; # instead of repeating this calculation, we just use empty_strided which does the same # calculation when setting the storage size. as_strided = torch.empty(empty_strided.storage().size(), device=device).as_strided(shape, strides) self.assertEqual(empty_strided.shape, as_strided.shape) self.assertEqual(empty_strided.stride(), as_strided.stride()) def test_new_empty_strided(self, device): def _test(sizes, strides, dtype): x = torch.zeros(5, 5, dtype=dtype, device=device) result = x.new_empty_strided(sizes, strides) expected = torch.empty_strided(sizes, strides, dtype=x.dtype, device=x.device) self.assertEqual(result.shape, expected.shape) self.assertEqual(result.stride(), expected.stride()) self.assertEqual(result.dtype, expected.dtype) self.assertEqual(result.device, expected.device) _test([2, 3], [3, 1], torch.float) _test([5, 3], [0, 1], torch.int) _test([], [], torch.float) # Some really weird cases for shape in [(2, 3, 4), (0, 2, 0)]: for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]: _test(shape, strides, torch.float) # Make sure sizes and strides have the same length # https://github.com/pytorch/pytorch/issues/82416 with self.assertRaisesRegex( RuntimeError, r"dimensionality of sizes \(1\) must match dimensionality of strides \(0\)"): dtype = torch.float64 x = torch.tensor(-4.8270, dtype=dtype, device=device) size = (2,) stride = () x.new_empty_strided(size, stride, dtype=dtype, device=device) def test_strided_mismatched_stride_shape(self, device): for shape, strides in [((1, ), ()), ((1, 2), (1, ))]: with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"): torch.tensor(0.42, device=device).as_strided(shape, strides) with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"): torch.tensor(0.42, device=device).as_strided_(shape, strides) def test_empty_tensor_props(self, device): sizes = [(0,), (0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)] for size in sizes: x = torch.empty(tuple(size), device=device) self.assertEqual(size, x.shape) self.assertTrue(x.is_contiguous()) size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size) y = torch.empty(tuple(size_ones_instead_of_zeros), device=device) self.assertEqual(x.stride(), y.stride()) @onlyNativeDeviceTypes def test_empty_overflow(self, device): with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty([2, 4, 2**29, 2**29], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty([8, 8, 2**29, 2**29], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): torch.empty_strided([8, 8], [2**61, 1], dtype=torch.float64) with self.assertRaisesRegex(RuntimeError, 'Stride calculation overflowed'): torch.empty([0, 4, 2305843009213693952], dtype=torch.float32) def test_eye(self, device): for dtype in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16): if dtype == torch.bfloat16: continue # Test the RuntimeError is raised when either m or n is a negative number for n, m in ((-1, 1), (1, -1), (-1, -1)): with self.assertRaisesRegex(RuntimeError, 'must be greater or equal to'): torch.eye(n, m, device=device, dtype=dtype) # Test when the `m` parameter is not provided for n in (3, 5, 7): res1 = torch.eye(n, device=device, dtype=dtype) naive_eye = torch.zeros(n, n, dtype=dtype, device=device) naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1) self.assertEqual(naive_eye, res1) # Check eye_out outputs res2 = torch.empty(0, device=device, dtype=dtype) torch.eye(n, out=res2) self.assertEqual(res1, res2) for n, m in product([3, 5, 7], repeat=2): # Construct identity using diagonal and fill res1 = torch.eye(n, m, device=device, dtype=dtype) naive_eye = torch.zeros(n, m, dtype=dtype, device=device) naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1) self.assertEqual(naive_eye, res1) # Check eye_out outputs res2 = torch.empty(0, device=device, dtype=dtype) torch.eye(n, m, out=res2) self.assertEqual(res1, res2) @precisionOverride({torch.float: 1e-8, torch.double: 1e-10}) @dtypes(*floating_and_complex_types()) def test_linspace_vs_numpy(self, device, dtype): start = -0.0316082797944545745849609375 + (0.8888888888j if dtype.is_complex else 0) end = .0315315723419189453125 + (0.444444444444j if dtype.is_complex else 0) for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: t = torch.linspace(start, end, steps, device=device, dtype=dtype) a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertTrue(t[0].item() == a[0]) self.assertTrue(t[steps - 1].item() == a[steps - 1]) @dtypes(*integral_types()) def test_linspace_vs_numpy_integral(self, device, dtype): start = 1 end = 127 for steps in [25, 50]: t = torch.linspace(start, end, steps, device=device, dtype=dtype) a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertTrue(t[0].item() == a[0]) self.assertTrue(t[steps - 1].item() == a[steps - 1]) def _test_linspace_logspace_complex_helper(self, torch_fn, np_fn, device, dtype): start = torch.randn(1, dtype=dtype).item() end = (start + torch.randn(1, dtype=dtype) + random.randint(5, 15)).item() def test_fn(torch_fn, numpy_fn, steps): t = torch_fn(start, end, steps, device=device) a = numpy_fn(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: test_fn(torch.linspace, np.linspace, steps) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypes(torch.complex64) def test_linspace_vs_numpy_complex(self, device, dtype): self._test_linspace_logspace_complex_helper(torch.linspace, np.linspace, device, dtype) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypes(torch.complex64) def test_logspace_vs_numpy_complex(self, device, dtype): self._test_linspace_logspace_complex_helper(torch.logspace, np.logspace, device, dtype) @precisionOverride({torch.float: 1e-6, torch.double: 1e-10}) @dtypes(*floating_types()) def test_logspace_vs_numpy(self, device, dtype): start = -0.0316082797944545745849609375 end = .0315315723419189453125 for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: t = torch.logspace(start, end, steps, device=device, dtype=dtype) a = np.logspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertEqual(t[0], a[0]) self.assertEqual(t[steps - 1], a[steps - 1]) @onlyCUDA @largeTensorTest('16GB') def test_range_factories_64bit_indexing(self, device): bigint = 2 ** 31 + 1 t = torch.arange(bigint, dtype=torch.long, device=device) self.assertEqual(t[-1].item(), bigint - 1) del t t = torch.linspace(0, 1, bigint, dtype=torch.float, device=device) self.assertEqual(t[-1].item(), 1) del t t = torch.logspace(0, 1, bigint, 2, dtype=torch.float, device=device) self.assertEqual(t[-1].item(), 2) del t @expectedFailureMeta # RuntimeError: The tensor has a non-zero number of elements @onlyNativeDeviceTypes def test_tensor_ctor_device_inference(self, device): torch_device = torch.device(device) values = torch.tensor((1, 2, 3), device=device) # Tests tensor and as_tensor # Note: warnings are suppressed (suppresses warnings) for op in (torch.tensor, torch.as_tensor): with warnings.catch_warnings(): warnings.simplefilter("ignore") self.assertEqual(op(values).device, torch_device) self.assertEqual(op(values, dtype=torch.float64).device, torch_device) if self.device_type == 'cuda': with torch.cuda.device(device): self.assertEqual(op(values.cpu()).device, torch.device('cpu')) # Tests sparse ctor indices = torch.tensor([[0, 1, 1], [2, 0, 1], [2, 1, 0]], device=device) sparse_size = (3, 3, 3) sparse_default = torch.sparse_coo_tensor(indices, values, sparse_size) self.assertEqual(sparse_default.device, torch_device) sparse_with_dtype = torch.sparse_coo_tensor(indices, values, sparse_size, dtype=torch.float64) self.assertEqual(sparse_with_dtype.device, torch_device) if self.device_type == 'cuda': with torch.cuda.device(device): sparse_with_dtype = torch.sparse_coo_tensor(indices.cpu(), values.cpu(), sparse_size, dtype=torch.float64) self.assertEqual(sparse_with_dtype.device, torch.device('cpu')) def _test_signal_window_functions(self, name, dtype, device, **kwargs): import scipy.signal as signal torch_method = getattr(torch, name + '_window') if not dtype.is_floating_point: with self.assertRaisesRegex(RuntimeError, r'floating point'): torch_method(3, dtype=dtype) return for size in [0, 1, 2, 5, 10, 50, 100, 1024, 2048]: for periodic in [True, False]: res = torch_method( size, periodic=periodic, layout=torch.strided, requires_grad=False, **kwargs, device=device, dtype=dtype, ) # NB: scipy always returns a float64 result ref = torch.from_numpy( signal.get_window( (name, *(kwargs.values())), size, fftbins=periodic ) ) self.assertEqual(res, ref.to(dtype)) with self.assertRaisesRegex(RuntimeError, r'not implemented for sparse types'): torch_method(3, layout=torch.sparse_coo) self.assertTrue(torch_method(3, requires_grad=True).requires_grad) self.assertFalse(torch_method(3).requires_grad) @onlyNativeDeviceTypes @precisionOverride({torch.bfloat16: 5e-2, torch.half: 1e-3}) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") @dtypesIfCUDA(torch.float, torch.double, torch.bfloat16, torch.half, torch.long) @skipIfTorchDynamo("Not a TorchDynamo suitable test") @dtypes(torch.float, torch.double, torch.long) @parametrize("window", ['hann', 'hamming', 'bartlett', 'blackman']) def test_signal_window_functions(self, device, dtype, window): self._test_signal_window_functions(window, dtype, device) @onlyNativeDeviceTypes @precisionOverride({torch.bfloat16: 5e-2, torch.half: 1e-3}) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypesIfCUDA(torch.float, torch.double, torch.bfloat16, torch.half, torch.long) @dtypes(torch.float, torch.double, torch.long, torch.bfloat16, torch.float16) def test_kaiser_window(self, device, dtype): for num_test in range(50): self._test_signal_window_functions('kaiser', dtype, device, beta=random.random() * 30) def _test_signal_windows_functions(self, name, dtype, device, **kwargs): import scipy.signal as signal torch_method = getattr(torch.signal.windows, name) if not dtype.is_floating_point: with self.assertRaisesRegex(RuntimeError, r'floating point'): torch_method(3, dtype=dtype) return for size in [0, 1, 2, 5, 10, 50, 100, 1024, 2048]: for periodic in [True, False]: res = torch_method(size, sym=not periodic, **kwargs, device=device, dtype=dtype) # NB: scipy always returns a float64 result ref = torch.from_numpy(signal.get_window((name, *(kwargs.values())), size, fftbins=periodic)) self.assertEqual(res, ref, exact_dtype=False) self.assertTrue(torch_method(3, requires_grad=True).requires_grad) self.assertFalse(torch_method(3).requires_grad) # torch.signal.windows functions (except any with extra parameters) @onlyNativeDeviceTypes @unittest.skipIf(not TEST_SCIPY, "Scipy not found") @skipIfTorchDynamo("Not a TorchDynamo suitable test") @dtypes(torch.float, torch.double) @parametrize("window", ['bartlett', 'blackman', 'cosine', 'hamming', 'hann', 'nuttall']) def test_signal_windows_functions(self, device, dtype, window): self._test_signal_windows_functions(window, dtype, device) # torch.signal.windows.kaiser @onlyNativeDeviceTypes @unittest.skipIf(not TEST_SCIPY, "Scipy not found") @skipIfTorchDynamo("TorchDynamo fails with unknown reason") @dtypes(torch.float, torch.double) def test_kaiser(self, device, dtype): for num_test in range(50): self._test_signal_windows_functions('kaiser', dtype, device, beta=random.random() * 30) def test_tensor_factories_empty(self, device): # ensure we can create empty tensors from each factory function shapes = [(5, 0, 1), (0,), (0, 0, 1, 0, 2, 0, 0)] for shape in shapes: for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16, torch.chalf): self.assertEqual(shape, torch.zeros(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.full(shape, 3, device=device, dtype=dt).shape) self.assertEqual(shape, torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3).shape) self.assertEqual(shape, torch.ones(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.empty(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.empty_strided(shape, (0,) * len(shape), device=device, dtype=dt).shape) if dt == torch.bool: self.assertEqual(shape, torch.randint(2, shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 2).shape) elif dt.is_complex: self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape) else: self.assertEqual(shape, torch.randint(6, shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 6).shape) if dt not in {torch.double, torch.float, torch.half, torch.bfloat16, torch.complex32, torch.complex64, torch.complex128}: self.assertRaises(RuntimeError, lambda: torch.rand(shape, device=device, dtype=dt).shape) if dt == torch.double or dt == torch.float or dt.is_complex: self.assertEqual(shape, torch.randn(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randn_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual((0,), torch.arange(0, device=device).shape) self.assertEqual((0, 0), torch.eye(0, device=device).shape) self.assertEqual((0, 0), torch.eye(0, 0, device=device).shape) self.assertEqual((5, 0), torch.eye(5, 0, device=device).shape) self.assertEqual((0, 5), torch.eye(0, 5, device=device).shape) self.assertEqual((0,), torch.linspace(1, 1, 0, device=device).shape) self.assertEqual((0,), torch.logspace(1, 1, 0, device=device).shape) self.assertEqual((0,), torch.randperm(0, device=device).shape) self.assertEqual((0,), torch.bartlett_window(0, device=device).shape) self.assertEqual((0,), torch.bartlett_window(0, periodic=False, device=device).shape) self.assertEqual((0,), torch.hamming_window(0, device=device).shape) self.assertEqual((0,), torch.hann_window(0, device=device).shape) self.assertEqual((0,), torch.kaiser_window(0, device=device).shape) self.assertEqual((1, 1, 0), torch.tensor([[[]]], device=device).shape) self.assertEqual((1, 1, 0), torch.as_tensor([[[]]], device=device).shape) @onlyCUDA def test_tensor_factory_gpu_type_inference(self, device): with set_default_tensor_type(torch.cuda.DoubleTensor): with set_default_dtype(torch.float32): self.assertIs(torch.float32, torch.tensor(0.).dtype) self.assertEqual(torch.device(device), torch.tensor(0.).device) with set_default_dtype(torch.float64): self.assertIs(torch.float64, torch.tensor(0.).dtype) self.assertEqual(torch.device(device), torch.tensor(0.).device) @onlyCUDA def test_tensor_factory_gpu_type(self, device): with set_default_tensor_type(torch.cuda.FloatTensor): x = torch.zeros((5, 5)) self.assertIs(torch.float32, x.dtype) self.assertTrue(x.is_cuda) with set_default_tensor_type(torch.cuda.DoubleTensor): x = torch.zeros((5, 5)) self.assertIs(torch.float64, x.dtype) self.assertTrue(x.is_cuda) @skipCPUIf(True, 'compares device with cpu') @dtypes(torch.int, torch.long, torch.float, torch.double) def test_arange_device_vs_cpu(self, device, dtype): cpu_tensor = torch.arange(0, 10, dtype=dtype, device='cpu') device_tensor = torch.arange(0, 10, dtype=dtype, device=device) self.assertEqual(cpu_tensor, device_tensor) @dtypes(torch.bfloat16, torch.float16) def test_arange_lowp(self, device, dtype): ref_tensor = torch.tensor([0, 1, 2, 3], dtype=dtype, device=device) f16_tensor = torch.arange(0, 4, dtype=dtype, device=device) self.assertEqual(ref_tensor, f16_tensor) # step=2 ref_tensor = torch.tensor([0, 2, 4], dtype=dtype, device=device) f16_tensor = torch.arange(0, 6, step=2, dtype=dtype, device=device) self.assertEqual(ref_tensor, f16_tensor) @dtypes(*all_types_and_complex_and(torch.bfloat16)) @dtypesIfCUDA(*all_types_and_complex_and(torch.bfloat16)) def test_linspace(self, device, dtype): _from = random.random() to = _from + random.random() res1 = torch.linspace(_from, to, 137, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.linspace(_from, to, 137, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # small tensor self.assertEqual(torch.linspace(10, 20, 11, device=device, dtype=dtype), torch.tensor(list(range(10, 21)), device=device, dtype=dtype)) # large tensor if dtype not in (torch.int8, torch.uint8): self.assertEqual(torch.linspace(10, 2000, 1991, device=device, dtype=dtype), torch.tensor(list(range(10, 2001)), device=device, dtype=dtype)) # Vectorization on non-contiguous tensors if dtype not in (torch.int8, torch.uint8): # int8 and uint8 are too small for this test res = torch.rand(3, 3, 1000, device=device).to(dtype) res = res.permute(2, 0, 1) torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, out=res) self.assertEqual(res.flatten(), torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, device=device, dtype=dtype)) self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, -1, device=device, dtype=dtype)) # steps = 1 self.assertEqual(torch.linspace(0, 1, 1, device=device, dtype=dtype), torch.zeros(1, device=device, dtype=dtype), atol=0, rtol=0) # steps = 0 self.assertEqual(torch.linspace(0, 1, 0, device=device, dtype=dtype).numel(), 0, atol=0, rtol=0) # steps not provided self.assertRaises(TypeError, lambda: torch.linspace(0, 1, device=device, dtype=dtype)) if dtype == torch.float: # passed dtype can't be safely casted to inferred dtype with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"): torch.linspace(0, 1j, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"): torch.linspace(0j, 1, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"): torch.linspace(0j, 1j, 5, device=device, dtype=dtype) # Check linspace for generating the correct output for each dtype. start = 0 if dtype == torch.uint8 else -100 expected_lin = torch.tensor([start + .5 * i for i in range(401)], device=device, dtype=torch.double) actual_lin = torch.linspace(start, start + 200, 401, device=device, dtype=dtype) # If on GPU, allow for minor error depending on dtype. tol = 0. if device != 'cpu': if dtype == torch.half: tol = 1e-1 elif dtype == torch.float: tol = 1e-5 elif dtype == torch.double: tol = 1e-10 self.assertEqual(expected_lin.to(dtype), actual_lin, atol=tol, rtol=0) # Check linspace for generating with start > end. self.assertEqual(torch.linspace(2, 0, 3, device=device, dtype=dtype), torch.tensor((2, 1, 0), device=device, dtype=dtype), atol=0, rtol=0) # Check for race condition (correctness when applied on a large tensor). if dtype not in (torch.int8, torch.uint8, torch.int16, torch.half, torch.bfloat16): y = torch.linspace(0, 999999 + (999999j if dtype.is_complex else 0), 1000000, device=device, dtype=dtype) if dtype.is_complex: cond = torch.logical_and(y[:-1].real < y[1:].real, y[:-1].imag < y[1:].imag) else: cond = y[:-1] < y[1:] correct = all(cond) self.assertTrue(correct) # Check linspace for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2), dtype=dtype) self.assertEqual(x, torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=dtype), atol=0, rtol=0) def _test_linspace_logspace_deduction_helper(self, fn, device): for start, end in [(1, 2), (1., 2), (1., -2.), (1j, 2j), (0., 2j), (1j, 2)]: dtype = torch.float32 if isinstance(start, complex) or isinstance(end, complex): dtype = torch.cfloat self.assertEqual(fn(start, end, steps=100, device=device).dtype, dtype) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_linspace_deduction(self, device): # Test deduction from input parameters. self._test_linspace_logspace_deduction_helper(torch.linspace, device) @skipIfTorchDynamo("TorchDynamo fails with unknown reason") def test_logspace_deduction(self, device): # Test deduction from input parameters. self._test_linspace_logspace_deduction_helper(torch.logspace, device) # The implementation of linspace+logspace goes through a different path # when the steps arg is equal to 0 or 1. For other values of `steps` # they call specialized linspace (or logspace) kernels. LINSPACE_LOGSPACE_SPECIAL_STEPS = [0, 1] # NOTE [Linspace+Logspace precision override] # Our Linspace and logspace torch.half CUDA kernels are not very precise. # Since linspace/logspace are deterministic, we can compute an expected # amount of error (by testing without a precision override), adding a tiny # amount (EPS) to that, and using that value as the override. LINSPACE_LOGSPACE_EXTRA_EPS = 1e-5 # Compares linspace device vs. cpu def _test_linspace(self, device, dtype, steps): a = torch.linspace(0, 10, steps=steps, dtype=dtype, device=device) b = torch.linspace(0, 10, steps=steps) self.assertEqual(a, b, exact_dtype=False) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.0039 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypes(*floating_and_complex_types_and(torch.half, torch.bfloat16)) def test_linspace_device_vs_cpu(self, device, dtype): self._test_linspace(device, dtype, steps=10) @skipCPUIf(True, "compares with CPU") @dtypes(*floating_and_complex_types_and(torch.half, torch.bfloat16)) def test_linspace_special_steps(self, device, dtype): for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: self._test_linspace(device, dtype, steps=steps) # Compares logspace device vs cpu def _test_logspace(self, device, dtype, steps): a = torch.logspace(1, 1.1, steps=steps, dtype=dtype, device=device) b = torch.logspace(1, 1.1, steps=steps) self.assertEqual(a, b, exact_dtype=False) # Compares logspace device vs cpu def _test_logspace_base2(self, device, dtype, steps): a = torch.logspace(1, 1.1, steps=steps, base=2, dtype=dtype, device=device) b = torch.logspace(1, 1.1, steps=steps, base=2) self.assertEqual(a, b, exact_dtype=False) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.025 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_device_vs_cpu(self, device, dtype): self._test_logspace(device, dtype, steps=10) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.0201 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_base2(self, device, dtype): self._test_logspace_base2(device, dtype, steps=10) @skipCPUIf(True, "compares with CPU") @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_special_steps(self, device, dtype): for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: self._test_logspace(device, dtype, steps=steps) self._test_logspace_base2(device, dtype, steps=steps) @dtypes(*all_types_and(torch.bfloat16)) @dtypesIfCUDA(*integral_types_and(torch.half, torch.bfloat16, torch.float32, torch.float64) if TEST_WITH_ROCM else all_types_and(torch.half, torch.bfloat16)) def test_logspace(self, device, dtype): _from = random.random() to = _from + random.random() res1 = torch.logspace(_from, to, 137, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.logspace(_from, to, 137, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, -1, device=device, dtype=dtype)) # steps not provided self.assertRaises(TypeError, lambda: torch.logspace(0, 1, device=device, dtype=dtype)) self.assertEqual(torch.logspace(0, 1, 1, device=device, dtype=dtype), torch.ones(1, device=device, dtype=dtype), atol=0, rtol=0) if dtype == torch.float: # passed dtype can't be safely casted to inferred dtype with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"): torch.logspace(0, 1j, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"): torch.logspace(0j, 1, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"): torch.logspace(0j, 1j, 5, device=device, dtype=dtype) # Check precision - start, stop and base are chosen to avoid overflow # steps is chosen so that step size is not subject to rounding error # a tolerance is needed for gpu tests due to differences in computation atol = None rtol = None if self.device_type == 'cpu': atol = 0 rtol = 0 self.assertEqual(torch.tensor([2. ** (i / 8.) for i in range(49)], device=device, dtype=dtype), torch.logspace(0, 6, steps=49, base=2, device=device, dtype=dtype), atol=atol, rtol=rtol) # Check non-default base=2 self.assertEqual(torch.logspace(1, 1, 1, 2, device=device, dtype=dtype), torch.ones(1, device=device, dtype=dtype) * 2) self.assertEqual(torch.logspace(0, 2, 3, 2, device=device, dtype=dtype), torch.tensor((1, 2, 4), device=device, dtype=dtype)) # Check logspace_ for generating with start > end. self.assertEqual(torch.logspace(1, 0, 2, device=device, dtype=dtype), torch.tensor((10, 1), device=device, dtype=dtype), atol=0, rtol=0) # Check logspace_ for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) y = torch.logspace(0, 3, 4, base=2, device=device, dtype=dtype, out=x.narrow(1, 1, 2)) self.assertEqual(x, torch.tensor(((0, 1, 2), (0, 4, 8)), device=device, dtype=dtype), atol=0, rtol=0) @onlyNativeDeviceTypes @dtypes(torch.half, torch.float, torch.double) def test_full_inference(self, device, dtype): size = (2, 2) with set_default_dtype(dtype): # Tests bool fill value inference t = torch.full(size, True) self.assertEqual(t.dtype, torch.bool) # Tests integer fill value inference t = torch.full(size, 1) self.assertEqual(t.dtype, torch.long) # Tests float fill value inference t = torch.full(size, 1.) self.assertEqual(t.dtype, dtype) # Tests complex inference t = torch.full(size, (1 + 1j)) ctype = torch.complex128 if dtype is torch.double else torch.complex64 self.assertEqual(t.dtype, ctype) def test_full_out(self, device): size = (5,) o = torch.empty(size, device=device, dtype=torch.long) # verifies dtype/out conflict throws a RuntimeError with self.assertRaises(RuntimeError): torch.full(o.shape, 1., dtype=torch.float, out=o) # verifies out dtype overrides inference self.assertEqual(torch.full(o.shape, 1., out=o).dtype, o.dtype) self.assertEqual(torch.full(size, 1, out=o).dtype, o.dtype) # check that warning for numpy being not writable is suppressed # when a copy of it is being created. # see issue #47160 def test_tensor_from_non_writable_numpy(self, device): with warnings.catch_warnings(record=True) as w: a = np.arange(5.) a.flags.writeable = False t = torch.tensor(a) self.assertEqual(len(w), 0) @onlyCPU @parametrize('shared', [True, False]) @unittest.skipIf(IS_WINDOWS, "NamedTemporaryFile on windows") def test_from_file(self, device, shared): dtype = torch.float64 t = torch.randn(2, 5, dtype=dtype, device=device) with tempfile.NamedTemporaryFile() as f: expected_filename = f.name if shared else None t.numpy().tofile(f) t_mapped = torch.from_file(f.name, shared=shared, size=t.numel(), dtype=dtype) self.assertTrue(t_mapped.untyped_storage().filename == expected_filename) self.assertEqual(torch.flatten(t), t_mapped) s = torch.UntypedStorage.from_file(f.name, shared, t.numel() * dtype.itemsize) self.assertTrue(s.filename == expected_filename) @onlyCPU def test_storage_filename(self, device): t = torch.randn(2, 5, device=device) self.assertIsNone(t.untyped_storage().filename) # Class for testing random tensor creation ops, like torch.randint class TestRandomTensorCreation(TestCase): exact_dtype = True # TODO: add torch.complex64, torch.complex128 @dtypes(torch.float, torch.double) def test_normal(self, device, dtype): def helper(self, device, dtype, ptype, t_transform, std_transform): q = torch.empty(100, 100, dtype=dtype, device=device) q.normal_() self.assertEqual(t_transform(q).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(q).std(), std_transform(1), atol=0.2, rtol=0) q.normal_(2, 3) self.assertEqual(t_transform(q).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(q).std(), std_transform(3), atol=0.3, rtol=0) q = torch.empty(100, 100, dtype=dtype, device=device) q_row1 = q[0:1].clone() q[99:100].normal_() self.assertEqual(t_transform(q[99:100]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(q[99:100]).std(), std_transform(1), atol=0.2, rtol=0) self.assertEqual(t_transform(q[0:1]).clone(), t_transform(q_row1)) mean = torch.empty(100, 100, dtype=dtype, device=device) mean[:50].fill_(ptype(0)) mean[50:].fill_(ptype(1)) std = torch.empty(100, 100, dtype=torch.float, device=device) std[:, :50] = 4 std[:, 50:] = 1 r = torch.normal(mean) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(1), atol=0.2, rtol=0) r.fill_(42) r = torch.normal(mean, 3) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0) r.fill_(42) torch.normal(mean, 3, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0) r.fill_(42) r = torch.normal(2, std) self.assertFalse(r.dtype.is_complex) self.assertEqual(str(r.device), device) self.assertEqual(r.mean(), 2, atol=0.2, rtol=0) self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0) self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0) r.fill_(42) torch.normal(2, std, out=r) self.assertFalse(r.dtype.is_complex) self.assertEqual(str(r.device), device) self.assertEqual(r.mean(), 2, atol=0.2, rtol=0) self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0) self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0) r.fill_(42) r = torch.normal(mean, std) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0) self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0) r.fill_(42) torch.normal(mean, std, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0) self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0) # test empty mean/std out = torch.normal(mean=torch.empty((0, 2)), std=torch.empty((0, 1))) self.assertEqual(out.size(), torch.Size([0, 2])) r.fill_(42) r = torch.normal(2, 3, (100, 100), dtype=dtype, device=device) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0) r.fill_(42) torch.normal(2, 3, (100, 100), dtype=dtype, device=device, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0) # float std 0 with float mean r.fill_(42) torch.normal(2, 0, (10, 10), dtype=dtype, device=device, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertTrue(r.eq(2).all()) # float std 0 with tensor mean r.fill_(42) mean_rand = torch.randn(10, 10, dtype=dtype, device=device) torch.normal(mean_rand, 0, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(mean_rand, r, atol=0, rtol=0) # tensor std 0 with float mean r.fill_(42) std_zeros = torch.zeros(10, 10, dtype=dtype, device=device) torch.normal(2, std_zeros, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertTrue(r.eq(2).all()) # tensor std 0 with tensor mean r.fill_(42) torch.normal(mean_rand, std_zeros, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(mean_rand, r, atol=0, rtol=0) if dtype.is_complex: helper(self, device, dtype, lambda x: complex(x, x), lambda t: torch.real(t).to(torch.float), lambda mean: mean / math.sqrt(2)) helper(self, device, dtype, lambda x: complex(x, x), lambda t: torch.imag(t).to(torch.float), lambda mean: mean / math.sqrt(2)) self.assertRaisesRegex( RuntimeError, "normal expects standard deviation to be non-complex", lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device))) out = torch.empty(100, 100, dtype=dtype, device=device) self.assertRaisesRegex( RuntimeError, "normal expects standard deviation to be non-complex", lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device), out=out)) else: helper(self, device, dtype, lambda x: x, lambda t: t, lambda mean: mean) # Ensure that normal raises appropriate error when `std` < 0 def test_normal_std_error(self, device): a = torch.tensor(0, dtype=torch.float32, device=device) std = torch.tensor(-1, dtype=torch.float32, device=device) for input in [0, a]: with self.assertRaisesRegex(RuntimeError, r'normal expects std >= 0.0, but found std'): torch.normal(input, -1, (10,)) with self.assertRaisesRegex(RuntimeError, r'normal expects all elements of std >= 0.0'): torch.normal(input, std) # https://github.com/pytorch/pytorch/issues/126834 @xfailIfTorchDynamo @dtypes(torch.float, torch.double, torch.half) @dtypesIfCUDA(torch.float, torch.double, torch.half, torch.bfloat16) def test_uniform_from_to(self, device, dtype): size = 2000 alpha = 0.1 float_min = torch.finfo(torch.float).min float_max = torch.finfo(torch.float).max double_min = torch.finfo(torch.double).min double_max = torch.finfo(torch.double).max if dtype == torch.bfloat16: min_val = -3.389531389251535e+38 max_val = 3.389531389251535e+38 else: min_val = torch.finfo(dtype).min max_val = torch.finfo(dtype).max values = [double_min, float_min, -42, 0, 42, float_max, double_max] for from_ in values: for to_ in values: t = torch.empty(size, dtype=dtype, device=device) if not (min_val <= from_ <= max_val) or not (min_val <= to_ <= max_val): pass elif to_ < from_: self.assertRaisesRegex( RuntimeError, "uniform_ expects to return", lambda: t.uniform_(from_, to_) ) elif to_ - from_ > max_val: self.assertRaisesRegex( RuntimeError, "uniform_ expects to-from", lambda: t.uniform_(from_, to_) ) else: t.uniform_(from_, to_) range_ = to_ - from_ if not (dtype == torch.bfloat16) and not ( dtype == torch.half and device == 'cpu') and not torch.isnan(t).all(): delta = alpha * range_ double_t = t.to(torch.double) if range_ == 0: self.assertTrue(double_t.min() == from_) self.assertTrue(double_t.max() == to_) elif dtype == torch.half: self.assertTrue(from_ <= double_t.min() <= (from_ + delta)) self.assertTrue((to_ - delta) <= double_t.max() <= to_) else: self.assertTrue(from_ <= double_t.min() <= (from_ + delta)) self.assertTrue((to_ - delta) <= double_t.max() < to_) def test_random_neg_values(self, device): SIZE = 10 signed_dtypes = [torch.double, torch.float, torch.long, torch.int, torch.short] for dtype in signed_dtypes: res = torch.rand(SIZE, SIZE).to(device=device, dtype=dtype) res.random_(-10, -1) self.assertLessEqual(res.max().item(), 9) self.assertGreaterEqual(res.min().item(), -10) # TODO: this test should be updated @onlyCPU def test_randint_inference(self, device): size = (2, 1) for args in [(3,), (1, 3)]: # (low,) and (low, high) self.assertIs(torch.int64, torch.randint(*args, size=size).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, layout=torch.strided).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, generator=torch.default_generator).dtype) self.assertIs(torch.float32, torch.randint(*args, size=size, dtype=torch.float32).dtype) out = torch.empty(size, dtype=torch.float32) self.assertIs(torch.float32, torch.randint(*args, size=size, out=out).dtype) self.assertIs(torch.float32, torch.randint(*args, size=size, out=out, dtype=torch.float32).dtype) out = torch.empty(size, dtype=torch.int64) self.assertIs(torch.int64, torch.randint(*args, size=size, out=out).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, out=out, dtype=torch.int64).dtype) # TODO: this test should be updated @onlyCPU def test_randint(self, device): SIZE = 100 def seed(generator): if generator is None: torch.manual_seed(123456) else: generator.manual_seed(123456) return generator for generator in (None, torch.Generator()): generator = seed(generator) res1 = torch.randint(0, 6, (SIZE, SIZE), generator=generator) res2 = torch.empty((), dtype=torch.int64) generator = seed(generator) torch.randint(0, 6, (SIZE, SIZE), generator=generator, out=res2) generator = seed(generator) res3 = torch.randint(6, (SIZE, SIZE), generator=generator) res4 = torch.empty((), dtype=torch.int64) generator = seed(generator) torch.randint(6, (SIZE, SIZE), out=res4, generator=generator) self.assertEqual(res1, res2) self.assertEqual(res1, res3) self.assertEqual(res1, res4) self.assertEqual(res2, res3) self.assertEqual(res2, res4) self.assertEqual(res3, res4) self.assertTrue((res1 < 6).all().item()) self.assertTrue((res1 >= 0).all().item()) @dtypes(torch.half, torch.float, torch.bfloat16, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_randn(self, device, dtype): SIZE = 100 for size in [0, SIZE]: torch.manual_seed(123456) res1 = torch.randn(size, size, dtype=dtype, device=device) res2 = torch.tensor([], dtype=dtype, device=device) torch.manual_seed(123456) torch.randn(size, size, out=res2) self.assertEqual(res1, res2) @dtypes(torch.float, torch.double, torch.complex32, torch.complex64, torch.complex128) def test_rand(self, device, dtype): SIZE = 100 for size in [0, SIZE]: torch.manual_seed(123456) res1 = torch.rand(size, size, dtype=dtype, device=device) res2 = torch.tensor([], dtype=dtype, device=device) torch.manual_seed(123456) torch.rand(size, size, out=res2) self.assertEqual(res1, res2) def test_randperm(self, device): if device == 'cpu' or device == 'meta': rng_device = None else: # TODO: This won't actually work for non-CUDA device # see https://github.com/pytorch/pytorch/issues/54282 rng_device = [device] # Test core functionality. On CUDA, different value of n has different # code path for n in (5, 100, 50000, 100000): # Ensure both integer and floating-point numbers are tested. Half follows an execution path that is # different from others on CUDA. for dtype in (torch.long, torch.half, torch.float, torch.bfloat16): if n > 2049 and dtype == torch.half: # Large n for torch.half will raise an exception, do not test here. continue if dtype == torch.bfloat16 and device != 'cpu': continue if n > 256 and dtype == torch.bfloat16: continue with torch.random.fork_rng(devices=rng_device): res1 = torch.randperm(n, dtype=dtype, device=device) res2 = torch.empty(0, dtype=dtype, device=device) torch.randperm(n, out=res2, dtype=dtype, device=device) self.assertEqual(res1, res2, atol=0, rtol=0) self.assertEqual(res1.sort().values.long(), torch.arange(n, device=device)) # Default type is long for n in (100, 10000): self.assertEqual(torch.randperm(n, device=device).dtype, torch.long) # randperm of 0 elements is an empty tensor res1 = torch.randperm(0) res2 = torch.tensor(5, dtype=dtype, device=device) torch.randperm(0, out=res2) self.assertEqual(res1.numel(), 0) self.assertEqual(res2.numel(), 0) # Test exceptions when n is too large for a floating point type for dtype, small_n, large_n in ((torch.uint8, 2**8, 2**8 + 1), (torch.half, 2**11 + 1, 2**11 + 2), (torch.float, 2**24 + 1, 2**24 + 2), (torch.double, 2**25, # 2**53 + 1 is too large to run 2**53 + 2)): res = torch.empty(0, dtype=dtype, device=device) torch.randperm(small_n, out=res) # No exception expected self.assertRaises(RuntimeError, lambda: torch.randperm(large_n, out=res, device=device)) # Test non-contiguous tensors for n in (4, 5, 6, 10, 20): non_contiguous_tensor = torch.zeros((2, 3), dtype=torch.long, device=device).t() self.assertFalse(non_contiguous_tensor.is_contiguous()) with torch.random.fork_rng(devices=rng_device): res = torch.randperm(n, dtype=torch.long, device=device) torch.randperm(n, out=non_contiguous_tensor) self.assertEqual(non_contiguous_tensor, res) self.assertEqual(res.sort().values.long(), torch.arange(n, device=device)) # Test exceptions when device and generator types are incompatible @onlyCUDA def test_randperm_device_compatibility(self, device): cuda_gen = torch.Generator(device='cuda') cpu_gen = torch.Generator(device='cpu') # n=0 is a special case that we don't need to use generator, thus no error even if # device and generator don't match torch.randperm(0, device='cuda:0', generator=torch.Generator(device='cuda:1')) if torch.cuda.device_count() > 1: torch.randperm(0, device='cuda:1', generator=torch.Generator(device='cuda:0')) torch.randperm(0, device='cuda', generator=torch.Generator(device='cpu')) torch.randperm(0, device='cpu', generator=torch.Generator(device='cuda')) for n in (1, 3, 100, 30000): torch.randperm(n, device='cuda', generator=torch.Generator(device='cuda:0')) torch.randperm(n, device='cuda:0', generator=torch.Generator(device='cuda')) # For cuda:0 to match cuda:1, we are making consistent device type matching # behavior just like torch.randint. Longer term, generator should ignore # device ordinal, since it's not used anyway. torch.randint(low=0, high=n + 1, size=(1,), device="cuda:0", generator=torch.Generator(device='cuda:1')) torch.randperm(n, device='cuda:0', generator=torch.Generator(device='cuda:1')) if torch.cuda.device_count() > 1: torch.randint(low=0, high=n + 1, size=(1,), device="cuda:1", generator=torch.Generator(device='cuda:0')) torch.randperm(n, device='cuda:1', generator=torch.Generator(device='cuda:0')) regex = 'Expected a .* device type for generator but found .*' cuda_t = torch.tensor(n, device='cuda') self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cuda', generator=cpu_gen)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cuda', generator=cpu_gen, out=cuda_t)) cpu_t = torch.tensor(n, device='cpu') self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cpu', generator=cuda_gen)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cpu', generator=cuda_gen, out=cpu_t)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, generator=cuda_gen)) # implicitly on CPU # Class for testing *like ops, like torch.ones_like class TestLikeTensorCreation(TestCase): exact_dtype = True # TODO: this test should be updated def test_ones_like(self, device): expected = torch.ones(100, 100, device=device) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) # test boolean tensor expected = torch.tensor([True, True], device=device, dtype=torch.bool) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) # TODO: this test should be updated @onlyCPU def test_empty_like(self, device): x = torch.autograd.Variable(torch.tensor([])) y = torch.autograd.Variable(torch.randn(4, 4)) z = torch.autograd.Variable(torch.IntTensor([1, 2, 3])) for a in (x, y, z): self.assertEqual(torch.empty_like(a).shape, a.shape) self.assertEqualTypeString(torch.empty_like(a), a) def test_zeros_like(self, device): expected = torch.zeros((100, 100,), device=device) res1 = torch.zeros_like(expected) self.assertEqual(res1, expected) @deviceCountAtLeast(2) def test_zeros_like_multiple_device(self, devices): expected = torch.zeros(100, 100, device=devices[0]) x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) output = torch.zeros_like(x) self.assertEqual(output, expected) @deviceCountAtLeast(2) def test_ones_like_multiple_device(self, devices): expected = torch.ones(100, 100, device=devices[0]) x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) output = torch.ones_like(x) self.assertEqual(output, expected) # Full-like precedence is the explicit dtype then the dtype of the "like" # tensor. @onlyNativeDeviceTypes def test_full_like_inference(self, device): size = (2, 2) like = torch.empty((5,), device=device, dtype=torch.long) self.assertEqual(torch.full_like(like, 1.).dtype, torch.long) self.assertEqual(torch.full_like(like, 1., dtype=torch.complex64).dtype, torch.complex64) # Tests for the `frombuffer` function (only work on CPU): # Constructs tensors from Python objects that implement the buffer protocol, # without copying data. SIZE = 5 SHAPE = (SIZE,) def may_require_grad(dtype): return dtype.is_floating_point or dtype.is_complex def get_dtype_size(dtype): return int(torch.empty((), dtype=dtype).element_size()) class TestBufferProtocol(TestCase): def _run_test(self, shape, dtype, count=-1, first=0, offset=None, **kwargs): numpy_dtype = torch_to_numpy_dtype_dict[dtype] if offset is None: offset = first * get_dtype_size(dtype) numpy_original = make_tensor(shape, dtype=dtype, device="cpu").numpy() original = memoryview(numpy_original) # First call PyTorch's version in case of errors. # If this call exits successfully, the NumPy version must also do so. torch_frombuffer = torch.frombuffer(original, dtype=dtype, count=count, offset=offset, **kwargs) numpy_frombuffer = np.frombuffer(original, dtype=numpy_dtype, count=count, offset=offset) self.assertEqual(numpy_frombuffer, torch_frombuffer) self.assertEqual(numpy_frombuffer.__array_interface__["data"][0], torch_frombuffer.data_ptr()) return (numpy_original, torch_frombuffer) @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_same_type(self, device, dtype): self._run_test((), dtype) self._run_test((4,), dtype) self._run_test((10, 10), dtype) @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_requires_grad(self, device, dtype): def _run_test_and_check_grad(requires_grad, *args, **kwargs): kwargs["requires_grad"] = requires_grad _, tensor = self._run_test(*args, **kwargs) self.assertTrue(tensor.requires_grad == requires_grad) requires_grad = may_require_grad(dtype) _run_test_and_check_grad(requires_grad, (), dtype) _run_test_and_check_grad(requires_grad, (4,), dtype) _run_test_and_check_grad(requires_grad, (10, 10), dtype) _run_test_and_check_grad(False, (), dtype) _run_test_and_check_grad(False, (4,), dtype) _run_test_and_check_grad(False, (10, 10), dtype) @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_with_offset(self, device, dtype): # Offset should be valid whenever there is, at least, # one remaining element for i in range(SIZE): self._run_test(SHAPE, dtype, first=i) @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_with_count(self, device, dtype): # Count should be valid for any valid in the interval # [-1, len(input)], except for 0 for i in range(-1, SIZE + 1): if i != 0: self._run_test(SHAPE, dtype, count=i) @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_with_count_and_offset(self, device, dtype): # Explicit default count [-1, 1, 2, ..., len] for i in range(-1, SIZE + 1): if i != 0: self._run_test(SHAPE, dtype, count=i) # Explicit default offset [0, 1, ..., len - 1] for i in range(SIZE): self._run_test(SHAPE, dtype, first=i) # All possible combinations of count and dtype aligned # offset for 'input' # count:[1, 2, ..., len - 1] x first:[0, 1, ..., len - count] for i in range(1, SIZE): for j in range(SIZE - i + 1): self._run_test(SHAPE, dtype, count=i, first=j) @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_invalid_positional_args(self, device, dtype): bytes = get_dtype_size(dtype) in_bytes = SIZE * bytes # Empty array with self.assertRaisesRegex(ValueError, r"both buffer length \(0\) and count"): empty = np.array([]) torch.frombuffer(empty, dtype=dtype) # Count equals 0 with self.assertRaisesRegex(ValueError, r"both buffer length .* and count \(0\)"): self._run_test(SHAPE, dtype, count=0) # Offset negative and bigger than total length with self.assertRaisesRegex(ValueError, rf"offset \(-{bytes} bytes\) must be"): self._run_test(SHAPE, dtype, first=-1) with self.assertRaisesRegex(ValueError, rf"offset \({in_bytes} bytes\) must be .* " rf"buffer length \({in_bytes} bytes\)"): self._run_test(SHAPE, dtype, first=SIZE) # Non-multiple offset with all elements if bytes > 1: offset = bytes - 1 with self.assertRaisesRegex(ValueError, rf"buffer length \({in_bytes - offset} bytes\) after " rf"offset \({offset} bytes\) must be"): self._run_test(SHAPE, dtype, offset=bytes - 1) # Count too big for each good first element for first in range(SIZE): count = SIZE - first + 1 with self.assertRaisesRegex(ValueError, rf"requested buffer length \({count} \* {bytes} bytes\) " rf"after offset \({first * bytes} bytes\) must .*" rf"buffer length \({in_bytes} bytes\)"): self._run_test(SHAPE, dtype, count=count, first=first) @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_shared_buffer(self, device, dtype): x = make_tensor((1,), dtype=dtype, device=device) # Modify the whole tensor arr, tensor = self._run_test(SHAPE, dtype) tensor[:] = x self.assertEqual(arr, tensor) self.assertTrue((tensor == x).all().item()) # Modify the whole tensor from all valid offsets, given # a count value for count in range(-1, SIZE + 1): if count == 0: continue actual_count = count if count > 0 else SIZE for first in range(SIZE - actual_count): last = first + actual_count arr, tensor = self._run_test(SHAPE, dtype, first=first, count=count) tensor[:] = x self.assertEqual(arr[first:last], tensor) self.assertTrue((tensor == x).all().item()) # Modify the first value in the array arr[first] = x.item() - 1 self.assertEqual(arr[first:last], tensor) @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_not_a_buffer(self, device, dtype): with self.assertRaisesRegex(ValueError, r"object does not implement Python buffer protocol."): torch.frombuffer([1, 2, 3, 4], dtype=dtype) @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_non_writable_buffer(self, device, dtype): numpy_arr = make_tensor((1,), dtype=dtype, device=device).numpy() byte_arr = numpy_arr.tobytes() with self.assertWarnsOnceRegex(UserWarning, r"The given buffer is not writable."): torch.frombuffer(byte_arr, dtype=dtype) def test_byte_to_int(self): byte_array = np.array([-1, 0, 0, 0, -1, 0, 0, 0], dtype=np.byte) if sys.byteorder == 'little' \ else np.array([0, 0, 0, -1, 0, 0, 0, -1], dtype=np.byte) tensor = torch.frombuffer(byte_array, dtype=torch.int32) self.assertEqual(tensor.numel(), 2) self.assertSequenceEqual(tensor, [255, 255]) # Tests for the `asarray` function: # Constructs tensors from a Python object that has one of the following # characteristics: # 1. is a Tensor # 2. is a DLPack capsule # 3. implements the Python Buffer protocol # 4. is an arbitrary list # The implementation itself is based on the Python Array API: # https://data-apis.org/array-api/latest/API_specification/creation_functions.html def get_another_device(device): return "cuda" if torch.device(device).type == "cpu" else "cpu" def identity(tensor): return tensor def to_numpy(tensor): return tensor.numpy() def to_memview(tensor): return memoryview(to_numpy(tensor)) class TestAsArray(TestCase): def _check(self, original, cvt=lambda t: t, is_alias=True, same_dtype=True, same_device=True, **kwargs): """Check the output of 'asarray', given its input and assertion information. Besides calling 'asarray' itself, this function does 4 different checks: 1. Whether the result is aliased or not, depending on 'is_alias' 2. Whether the result has the expected dtype and elements 3. Whether the result lives in the expected device 4. Whether the result has its 'requires_grad' set or not """ result = torch.asarray(cvt(original), **kwargs) self.assertTrue(isinstance(result, torch.Tensor)) # 1. The storage pointers should be equal only if 'is_alias' is set if is_alias: self.assertEqual(result.data_ptr(), original.data_ptr()) else: self.assertNotEqual(result.data_ptr(), original.data_ptr()) # 2. Comparison of the elements only takes place if the original # sequence and the resulting tensor have the same data type if same_dtype: self.assertEqual(original, result) else: dtype = kwargs.get("dtype", torch.get_default_dtype()) self.assertEqual(original.shape, result.shape) self.assertEqual(dtype, result.dtype) # 3. Given the specified target device, we first check whether # its type is the same, and then if its index is the same (if it # is not None) if same_device: device = original.device else: device = torch.device(kwargs.get("device", "cpu")) # Compare the target device type, and its index self.assertEqual(device.type, result.device.type) if device.index is not None: self.assertEqual(device.index, result.device.index) # 4. By default, 'requires_grad' is unset self.assertEqual(result.requires_grad, kwargs.get("requires_grad", False)) def _test_alias_with_cvt(self, cvt, device, dtype, shape=(5, 5), only_with_dtype=False): original = make_tensor(shape, dtype=dtype, device=device) def check(**kwargs): self._check(original, cvt=cvt, **kwargs) if not only_with_dtype: check(copy=False) check(device=device) check(device=device, copy=False) check(dtype=dtype) check(dtype=dtype, copy=False) check(requires_grad=False, dtype=dtype) check(requires_grad=may_require_grad(dtype), dtype=dtype) check(device=device, dtype=dtype) check(device=device, dtype=dtype, copy=False) # Skipping 'meta' devices, since there's no point in comparing their # data pointer (which is basically the point here), since they all # return 0. @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_alias_from_tensor(self, device, dtype): self._test_alias_with_cvt(identity, device, dtype) @onlyCPU @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_alias_from_numpy(self, device, dtype): self._test_alias_with_cvt(to_numpy, device, dtype) # Skipping 'meta', since 'to_dlpack' does not work for them. @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) def test_alias_from_dlpack(self, device, dtype): self._test_alias_with_cvt(to_dlpack, device, dtype) @onlyCPU @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_alias_from_buffer(self, device, dtype): self._test_alias_with_cvt(to_memview, device, dtype, shape=(5,), only_with_dtype=True) def _test_copy_with_cvt(self, cvt, device, dtype, shape=(5, 5), only_with_dtype=False): original = make_tensor(shape, dtype=dtype, device=device) def check(**kwargs): self._check(original, cvt=cvt, is_alias=False, **kwargs) if not only_with_dtype: check(copy=True) check(device=device, copy=True) check(requires_grad=False, dtype=dtype, copy=True) check(requires_grad=may_require_grad(dtype), dtype=dtype, copy=True) check(dtype=dtype, copy=True) check(device=device, dtype=dtype, copy=True) # Copy is forced because of different device if torch.cuda.is_available(): other = get_another_device(device) check(same_device=False, device=other, dtype=dtype) check(same_device=False, device=other, dtype=dtype, copy=True) # Copy is forced because of different dtype if not only_with_dtype: for other in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16): if dtype != other: check(same_dtype=False, dtype=other) check(same_dtype=False, dtype=other, copy=True) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_copy_tensor(self, device, dtype): self._test_copy_with_cvt(identity, device, dtype) @onlyCPU @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_copy_from_numpy(self, device, dtype): self._test_copy_with_cvt(to_numpy, device, dtype) @skipMeta @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) def test_copy_from_dlpack(self, device, dtype): self._test_copy_with_cvt(to_dlpack, device, dtype) @onlyCPU @dtypes(*set(numpy_to_torch_dtype_dict.values())) def test_copy_from_buffer(self, device, dtype): self._test_copy_with_cvt(to_memview, device, dtype, shape=(5,), only_with_dtype=True) def _test_copy_mult_devices(self, devices, dtype, cvt): cuda1 = devices[0] cuda2 = devices[1] original = make_tensor((5, 5), dtype=dtype, device=cuda1) def check(**kwargs): self._check(original, cvt, is_alias=False, same_device=False, device=cuda2, **kwargs) check() check(copy=True) check(dtype=dtype, copy=True) @onlyCUDA @deviceCountAtLeast(2) @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) def test_copy_from_tensor_mult_devices(self, devices, dtype): self._test_copy_mult_devices(devices, dtype, identity) @onlyCUDA @deviceCountAtLeast(2) @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) def test_copy_from_dlpack_mult_devices(self, devices, dtype): self._test_copy_mult_devices(devices, dtype, to_dlpack) @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) def test_copy_list(self, device, dtype): original = make_tensor((5, 5), dtype=dtype, device=torch.device("cpu")) def check(**kwargs): self._check(original, torch.Tensor.tolist, is_alias=False, **kwargs) same_device = torch.device("cpu") == device check(same_device=same_device, device=device, dtype=dtype) check(same_device=same_device, device=device, dtype=dtype, requires_grad=False) check(same_device=same_device, device=device, dtype=dtype, requires_grad=may_require_grad(dtype)) check(same_device=same_device, device=device, dtype=dtype, copy=True) @dtypes(torch.float32) def test_unsupported_alias(self, device, dtype): original = make_tensor((5, 5), dtype=dtype, device=device) if torch.cuda.is_available(): other_device = get_another_device(device) with self.assertRaisesRegex(ValueError, f"from device '{device}' to '{other_device}'"): torch.asarray(original, device=other_device, copy=False) with self.assertRaisesRegex(ValueError, "with dtype '.*' into dtype '.*'"): torch.asarray(original, dtype=torch.float64, copy=False) with self.assertRaisesRegex(ValueError, "can't alias arbitrary sequence"): torch.asarray(original.tolist(), copy=False) @onlyCUDA @deviceCountAtLeast(2) @dtypes(torch.float32) def test_unsupported_alias_mult_devices(self, devices, dtype): dev1, dev2 = devices[:2] original = make_tensor((5, 5), dtype=dtype, device=dev1) with self.assertRaisesRegex(ValueError, f"from device '{dev1}' to '{dev2}'"): torch.asarray(original, device=dev2, copy=False) @dtypes(torch.float32, torch.complex64) def test_retain_autograd_history(self, device, dtype): original = make_tensor((5, 5), dtype=dtype, device=device, requires_grad=True) # 'cloned' has 'grad_fn=' cloned = original.clone() def check(**kwargs): a = torch.asarray(cloned, **kwargs) requires_grad = kwargs.get("requires_grad", False) self.assertEqual(a.requires_grad, requires_grad) # Autograd history shouldn't be retained when requires_grad is False self.assertEqual(a.grad_fn is None, not requires_grad) check() check(requires_grad=True) check(copy=True) check(requires_grad=True, copy=True) check(requires_grad=False) check(requires_grad=False, copy=True) @onlyCPU def test_astensor_consistency(self, device): # See issue: https://github.com/pytorch/pytorch/pull/71757 examples = [ # Scalars True, 42, 1.0, # Homogeneous Lists [True, True, False], [1, 2, 3, 42], [0.0, 1.0, 2.0, 3.0], # Mixed Lists [True, False, 0], [0.0, True, False], [0, 1.0, 42], [0.0, True, False, 42], # With Complex [0.0, True, False, 42, 5j], # With Range range(5), ] for e in examples: original = torch.as_tensor(e) t = torch.asarray(e) self.assertEqual(t, original) @skipIfTorchDynamo() @onlyCPU def test_numpy_scalars(self, device): scalar = np.float64(0.5) with self.assertRaisesRegex(RuntimeError, "can't alias NumPy scalars."): torch.asarray(scalar, copy=False) tensor = torch.asarray(scalar) self.assertEqual(tensor.dim(), 0) self.assertEqual(tensor.item(), scalar.item()) self.assertEqual(tensor.dtype, torch.float64) # Regression test for https://github.com/pytorch/pytorch/issues/97021 zerodim_arr = np.array(1.) tensor = torch.asarray(zerodim_arr, dtype=torch.int32) self.assertEqual(tensor.dim(), 0) self.assertEqual(tensor.item(), zerodim_arr.item()) self.assertEqual(tensor.dtype, torch.int32) def test_default_device(self, device): original = torch.arange(5) examples: List[Tuple[Any, Dict]] = [ (3, {}), (original, {}), (to_numpy(original), {}), (to_memview(original), {"dtype": original.dtype}), ] for data, kwargs in examples: with torch.device(device): tensor = torch.asarray(data, **kwargs) self.assertEqual(tensor.device, torch.device(device)) # Check the contents of the tensor. if isinstance(data, int): self.assertEqual(data, tensor.item()) else: self.assertEqual(data, tensor) @onlyCUDA def test_device_without_index(self, device): original = torch.arange(5, device="cuda") tensor = torch.asarray(original, device="cuda") # The storage pointers should be equal self.assertEqual(original.data_ptr(), tensor.data_ptr()) tensor = torch.asarray(original, copy=True, device="cuda") # The storage pointers should not be equal self.assertNotEqual(original.data_ptr(), tensor.data_ptr()) instantiate_device_type_tests(TestTensorCreation, globals()) instantiate_device_type_tests(TestRandomTensorCreation, globals()) instantiate_device_type_tests(TestLikeTensorCreation, globals()) instantiate_device_type_tests(TestBufferProtocol, globals(), only_for="cpu") instantiate_device_type_tests(TestAsArray, globals()) if __name__ == '__main__': TestCase._default_dtype_check_enabled = True run_tests()