# Owner(s): ["module: dynamo"] import pytest from torch.testing._internal.common_utils import ( run_tests, TEST_WITH_TORCHDYNAMO, TestCase, ) # If we are going to trace through these, we should use NumPy # If testing on eager mode, we use torch._numpy if TEST_WITH_TORCHDYNAMO: import numpy as np from numpy.testing import assert_equal else: import torch._numpy as np from torch._numpy.testing import assert_equal class TestAppend(TestCase): # tests taken from np.append docstring def test_basic(self): result = np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) assert_equal(result, np.arange(1, 10, dtype=int)) # When `axis` is specified, `values` must have the correct shape. result = np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) assert_equal(result, np.arange(1, 10, dtype=int).reshape((3, 3))) with pytest.raises((RuntimeError, ValueError)): np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) if __name__ == "__main__": run_tests()