# Owner(s): ["module: codegen"] from __future__ import annotations import os import tempfile import unittest import expecttest from torchgen.gen import _GLOBAL_PARSE_NATIVE_YAML_CACHE # noqa: F401 from torchgen.gen_backend_stubs import run path = os.path.dirname(os.path.realpath(__file__)) gen_backend_stubs_path = os.path.join(path, "../torchgen/gen_backend_stubs.py") # gen_backend_stubs.py is an integration point that is called directly by external backends. # The tests here are to confirm that badly formed inputs result in reasonable error messages. class TestGenBackendStubs(expecttest.TestCase): def setUp(self) -> None: global _GLOBAL_PARSE_NATIVE_YAML_CACHE _GLOBAL_PARSE_NATIVE_YAML_CACHE.clear() def assert_success_from_gen_backend_stubs(self, yaml_str: str) -> None: with tempfile.NamedTemporaryFile(mode="w") as fp: fp.write(yaml_str) fp.flush() run(fp.name, "", True) def get_errors_from_gen_backend_stubs( self, yaml_str: str, *, kernels_str: str | None = None ) -> str: with tempfile.NamedTemporaryFile(mode="w") as fp: fp.write(yaml_str) fp.flush() try: if kernels_str is None: run(fp.name, "", True) else: with tempfile.NamedTemporaryFile(mode="w") as kernel_file: kernel_file.write(kernels_str) kernel_file.flush() run(fp.name, "", True, impl_path=kernel_file.name) except AssertionError as e: # Scrub out the temp file name from any error messages to simplify assertions. return str(e).replace(fp.name, "") self.fail( "Expected gen_backend_stubs to raise an AssertionError, but it did not." ) def test_valid_single_op(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla supported: - abs""" self.assert_success_from_gen_backend_stubs(yaml_str) def test_valid_multiple_ops(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla supported: - add.Tensor - abs""" self.assert_success_from_gen_backend_stubs(yaml_str) def test_valid_zero_ops(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla supported:""" self.assert_success_from_gen_backend_stubs(yaml_str) def test_valid_zero_ops_doesnt_require_backend_dispatch_key(self) -> None: yaml_str = """\ backend: BAD_XLA cpp_namespace: torch_xla supported:""" # External codegen on a yaml file with no operators is effectively a no-op, # so there's no reason to parse the backend self.assert_success_from_gen_backend_stubs(yaml_str) def test_valid_with_autograd_ops(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla supported: - abs autograd: - add.Tensor""" # External codegen on a yaml file with no operators is effectively a no-op, # so there's no reason to parse the backend self.assert_success_from_gen_backend_stubs(yaml_str) def test_missing_backend(self) -> None: yaml_str = """\ cpp_namespace: torch_xla supported: - abs""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, '''You must provide a value for "backend"''' ) def test_empty_backend(self) -> None: yaml_str = """\ backend: cpp_namespace: torch_xla supported: - abs""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, '''You must provide a value for "backend"''' ) def test_backend_invalid_dispatch_key(self) -> None: yaml_str = """\ backend: NOT_XLA cpp_namespace: torch_xla supported: - abs""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, """\ unknown dispatch key NOT_XLA The provided value for "backend" must be a valid DispatchKey, but got NOT_XLA.""", ) # noqa: B950 def test_missing_cpp_namespace(self) -> None: yaml_str = """\ backend: XLA supported: - abs""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, '''You must provide a value for "cpp_namespace"''' ) def test_whitespace_cpp_namespace(self) -> None: yaml_str = """\ backend: XLA cpp_namespace:\t supported: - abs""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, '''You must provide a value for "cpp_namespace"''' ) # supported is a single item (it should be a list) def test_nonlist_supported(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla supported: abs""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, """expected "supported" to be a list, but got: abs (of type )""", ) # supported contains an op that isn't in native_functions.yaml def test_supported_invalid_op(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla supported: - abs_BAD""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, """Found an invalid operator name: abs_BAD""" ) # The backend is valid, but doesn't have a valid autograd key. They can't override autograd kernels in that case. # Only using Vulkan here because it has a valid backend key but not an autograd key- if this changes we can update the test. def test_backend_has_no_autograd_key_but_provides_entries(self) -> None: yaml_str = """\ backend: Vulkan cpp_namespace: torch_vulkan supported: - add autograd: - sub""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, """Found an invalid operator name: add""" ) # noqa: B950 # in an operator group, currently all operators must either be registered to the backend or autograd kernel. # Here, functional and out mismatch def test_backend_autograd_kernel_mismatch_out_functional(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla supported: - add.Tensor autograd: - add.out""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, """Currently, all variants of an op must either be registered to a backend key, or to a backend's autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! add is listed under "supported", but add_out is listed under "autograd".""", # noqa: B950 ) # in an operator group, currently all operators must either be registered to the backend or autograd kernel. # Here, functional and inplace mismatch def test_backend_autograd_kernel_mismatch_functional_inplace(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla supported: - add.Tensor autograd: - add_.Tensor""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, """Currently, all variants of an op must either be registered to a backend key, or to a backend's autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! add is listed under "supported", but add_ is listed under "autograd".""", # noqa: B950 ) # Currently, the same operator can't be listed under both 'supported' and 'autograd', which would # involve registering the same kernel to both the XLA and AutogradXLA keys. # If we need that functionality in the future, we'll need to augment the codegen. def test_op_appears_in_supported_and_autograd_lists(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla supported: - add.Tensor autograd: - add.Tensor""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, """Currently, all variants of an op must either be registered to a backend key, or to a backend's autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! add is listed under "supported", but add is listed under "autograd".""", # noqa: B950 ) # unrecognized extra yaml key def test_unrecognized_key(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla supported: - abs invalid_key: invalid_val""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, """ contains unexpected keys: invalid_key. Only the following keys are supported: backend, class_name, cpp_namespace, extra_headers, supported, autograd, full_codegen, non_native, ir_gen, symint""", # noqa: B950 ) # if use_out_as_primary is provided, it must be a bool def test_use_out_as_primary_non_bool(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla use_out_as_primary: frue supported: - abs""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, """You must provide either True or False for use_out_as_primary. Provided: frue""", ) # noqa: B950 # if device_guard is provided, it must be a bool def test_device_guard_non_bool(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla device_guard: frue supported: - abs""" output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline( output_error, """You must provide either True or False for device_guard. Provided: frue""", ) # noqa: B950 def test_incorrect_kernel_name(self) -> None: yaml_str = """\ backend: XLA cpp_namespace: torch_xla supported: - abs autograd: - add.Tensor""" # Codegen will expect two kernel names (and try to parse them with regex): # XLANativeFunctions::abs(...) # XLANativeFunctions::add(...) kernels_str = """\ at::Tensor& XLANativeFunctions::absWRONG(at::Tensor& self) {} at::Tensor& XLANativeFunctions::add(at::Tensor& self) {}""" output_error = self.get_errors_from_gen_backend_stubs( yaml_str, kernels_str=kernels_str ) self.assertExpectedInline( output_error, """\ XLANativeFunctions is missing a kernel definition for abs. We found 0 kernel(s) with that name, but expected 1 kernel(s). The expected function schemas for the missing operator are: at::Tensor abs(const at::Tensor & self) """, ) if __name__ == "__main__": unittest.main()