# mypy: allow-untyped-defs import copy import dataclasses import functools import io import json import logging import os import re import sys import types import warnings import weakref import zipfile from collections import OrderedDict from contextlib import contextmanager from functools import lru_cache from typing import Any, Callable, Dict, List, Optional, Tuple, Union from unittest.mock import patch import torch import torch.fx import torch.utils._pytree as pytree from torch._dispatch.python import enable_python_dispatcher from torch._utils_internal import log_export_usage from torch.export._tree_utils import reorder_kwargs from torch.export.graph_signature import ( ArgumentSpec, ConstantArgument, ExportGraphSignature, InputKind, InputSpec, OutputKind, OutputSpec, SymIntArgument, TensorArgument, ) from torch.fx import traceback as fx_traceback from torch.fx._compatibility import compatibility from torch.fx.experimental.proxy_tensor import make_fx from torch._subclasses.fake_tensor import unset_fake_temporarily from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo from .wrappers import _wrap_submodules log = logging.getLogger(__name__) @dataclasses.dataclass class ExportDynamoConfig: """ Manage Export-specific configurations of Dynamo. """ allow_rnn: bool = True # We only want to print this once to avoid flooding logs in workflows where capture_pre_autograd_graph # is called multiple times. @lru_cache def capture_pre_autograd_graph_warning(): from torch._inductor import config log.warning("+============================+") log.warning("| !!! WARNING !!! |") log.warning("+============================+") log.warning("capture_pre_autograd_graph() is deprecated and doesn't provide any function guarantee moving forward.") log.warning("Please switch to use torch.export.export_for_training instead.") if config.is_fbcode(): log.warning("Unless the unittest is in the blocklist, capture_pre_autograd_graph() will fallback to torch.export.export_for_training.") # noqa: B950 @compatibility(is_backward_compatible=False) def capture_pre_autograd_graph( f: torch.nn.Module, args: Tuple[Any], kwargs: Optional[Dict[str, Any]] = None, dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any]]] = None, ) -> torch.nn.Module: """ A helper function that is intended to trace a module before any pre-autograd decomposition is run. The produced module will be "non-functional" and composed of aten operators. Later this API will be deleted in favor of more general torch.export API. Args: f: nn.Module to be traced args: example positional inputs. kwargs: optional example keyword inputs. dynamic_shapes: Should either be: 1) a dict from argument names of ``f`` to their dynamic shape specifications, 2) a tuple that specifies dynamic shape specifications for each input in original order. If you are specifying dynamism on keyword args, you will need to pass them in the order that is defined in the original function signature. The dynamic shape of a tensor argument can be specified as either (1) a dict from dynamic dimension indices to :func:`Dim` types, where it is not required to include static dimension indices in this dict, but when they are, they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None, where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions are denoted by None. Arguments that are dicts or tuples / lists of tensors are recursively specified by using mappings or sequences of contained specifications. Returns: An nn.Module containing the traced method. """ from torch.export._trace import _extract_fake_inputs, DEFAULT_EXPORT_DYNAMO_CONFIG, _ignore_backend_decomps from torch._utils_internal import capture_pre_autograd_graph_using_training_ir from torch._export.non_strict_utils import make_constraints from torch._subclasses.functional_tensor import FunctionalTensor from torch.export._unlift import _create_stateful_graph_module from torch.export.dynamic_shapes import _combine_args capture_pre_autograd_graph_warning() if sys.platform == "win32": raise RuntimeError("capture_pre_autograd_graph not yet supported on Windows") assert isinstance(f, torch.nn.Module), "Expected an nn.Module instance." if kwargs is None: kwargs = {} if capture_pre_autograd_graph_using_training_ir(): @lru_cache def print_export_warning(): log.warning("Using torch.export.export_for_training(...,strict=True)") print_export_warning() module = torch.export.export_for_training(f, args, kwargs, dynamic_shapes=dynamic_shapes, strict=True).module() else: log_export_usage(event="export.private_api", flags={"capture_pre_autograd_graph"}) # Do not decompose dropout for exported models, because in eval mode the dropout # op disappears from the graph, which makes it difficult to switch to train mode. # See https://github.com/pytorch/pytorch/pull/115258#issuecomment-1900755832. decomp_table = { op: op.decompose for op in FunctionalTensor.maybe_aliasing_or_mutating_ops if op != torch.ops.aten.dropout.default } with torch._dynamo.config.patch(dataclasses.asdict(DEFAULT_EXPORT_DYNAMO_CONFIG)), _ignore_backend_decomps(): m = torch._dynamo.export( f, dynamic_shapes=dynamic_shapes, assume_static_by_default=True, tracing_mode="symbolic", decomposition_table=decomp_table, pre_dispatch=True, aten_graph=True, _log_export_usage=False, )( *args, **kwargs, )[0] _, _, fake_mode = _extract_fake_inputs(m, args, kwargs) m.meta["inline_constraints"] = { k: v for k, v in fake_mode.shape_env.var_to_range.items() if re.match(r"^[if]\d+$", str(k)) } if isinstance(f, torch.nn.Module): from torch.export._trace import _restore_state_dict _restore_state_dict(f, m) flat_args, _ = pytree.tree_flatten((args, kwargs or {})) combined_args = _combine_args(f, args, kwargs) range_constraints = make_constraints( fake_mode, m, combined_args, dynamic_shapes, 0, ) module = _create_stateful_graph_module( m, range_constraints=range_constraints, ) error_message = \ """ Calling train() or eval() is not supported for exported models. Alternatively, you may override these methods to do custom user behavior as follows: def _my_train(self, mode: bool = True): ... def _my_eval(self): ... model.train = types.MethodType(_my_train, model) model.eval = types.MethodType(_my_eval, model) """ def _train(self, mode: bool = True): raise NotImplementedError(error_message) def _eval(self, mode: bool = True): raise NotImplementedError(error_message) module.train = types.MethodType(_train, module) # type: ignore[method-assign] module.eval = types.MethodType(_eval, module) # type: ignore[method-assign] # Remove Proxy because they cannot be deepcopied or pickled. if hasattr(module, "_buffers"): torch._export.utils.remove_proxy_from_state_dict( module._buffers, in_place=True ) return module def aot_compile( f: Callable, args: Tuple[Any], kwargs: Optional[Dict[str, Any]] = None, *, dynamic_shapes: Optional[Dict[str, Any]] = None, options: Optional[Dict[str, Any]] = None, remove_runtime_assertions: bool = False, disable_constraint_solver: bool = False, same_signature: bool = True, ) -> str: """ Note: this function is not stable yet Traces either an nn.Module's forward function or just a callable with PyTorch operations inside, generates executable cpp code from the program, and returns the path to the generated shared library Args: f: the `nn.Module` or callable to trace. args: example positional inputs. kwargs: optional example keyword inputs. dynamic_shapes: Should either be: 1) a dict from argument names of ``f`` to their dynamic shape specifications, 2) a tuple that specifies dynamic shape specifications for each input in original order. If you are specifying dynamism on keyword args, you will need to pass them in the order that is defined in the original function signature. The dynamic shape of a tensor argument can be specified as either (1) a dict from dynamic dimension indices to :func:`Dim` types, where it is not required to include static dimension indices in this dict, but when they are, they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None, where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions are denoted by None. Arguments that are dicts or tuples / lists of tensors are recursively specified by using mappings or sequences of contained specifications. options: A dictionary of options to control inductor disable_constraint_solver: Whether the dim constraint solver must be disabled. Returns: Path to the generated shared library """ from torch.export._trace import _export_to_torch_ir from torch._inductor.decomposition import select_decomp_table from torch._inductor import config if config.is_predispatch: gm = torch.export._trace._export(f, args, kwargs, dynamic_shapes, pre_dispatch=True).module() else: # We want to export to Torch IR here to utilize the pre_grad passes in # inductor, which run on Torch IR. gm = _export_to_torch_ir( f, args, kwargs, dynamic_shapes, disable_constraint_solver=disable_constraint_solver, same_signature=same_signature, # Disabling this flag, because instead we can rely on the mapping # dynamo_flat_name_to_original_fqn which is coming from Dynamo. restore_fqn=False, ) with torch.no_grad(): so_path = torch._inductor.aot_compile(gm, args, kwargs, options=options) # type: ignore[arg-type] return so_path def aot_load(so_path: str, device: str) -> Callable: """ Loads a shared library generated by aot_compile and returns a callable Args: so_path: Path to the shared library Returns: A callable """ if device == "cpu": runner = torch._C._aoti.AOTIModelContainerRunnerCpu(so_path, 1) # type: ignore[call-arg] elif device == "cuda" or device.startswith("cuda:"): runner = torch._C._aoti.AOTIModelContainerRunnerCuda(so_path, 1, device) # type: ignore[assignment, call-arg] else: raise RuntimeError("Unsupported device " + device) def optimized(*args, **kwargs): call_spec = runner.get_call_spec() # type: ignore[attr-defined] in_spec = pytree.treespec_loads(call_spec[0]) out_spec = pytree.treespec_loads(call_spec[1]) flat_inputs = pytree.tree_flatten((args, reorder_kwargs(kwargs, in_spec)))[0] flat_inputs = [x for x in flat_inputs if isinstance(x, torch.Tensor)] flat_outputs = runner.run(flat_inputs) # type: ignore[attr-defined] return pytree.tree_unflatten(flat_outputs, out_spec) return optimized