# mypy: ignore-errors import copy import math import os import sys from dataclasses import dataclass from functools import partial, wraps from typing import Callable, List import torch import torch.fx as fx from torch.hub import tqdm from torch.multiprocessing.reductions import StorageWeakRef from torch.utils._content_store import ContentStoreWriter from .compile_utils import get_outputs, get_placeholders is_tuple = object() @dataclass class LoadTensorMeta: size: List[int] stride: List[int] dtype: torch.dtype device: torch.device class ConcreteProp(torch.fx.Interpreter): def __init__(self, mod, *, writer=None, skip_offload=False): super().__init__(mod) self.writer = writer self.skip_offload = skip_offload self.seen_storages = set() def run_node(self, n): self.pbar.update(1) r = super().run_node(n) name = n.name if isinstance(r, torch.Tensor): if self.writer is None: n.meta["concrete_value"] = r else: if StorageWeakRef(r.untyped_storage()) in self.seen_storages: # Refuse to offload tensors which alias other live # tensors, because this will violate operator contracts n.meta["concrete_value"] = None else: if not self.skip_offload: self.writer.write_tensor(os.path.join("eager", name), r) n.meta["concrete_value"] = LoadTensorMeta( r.size(), r.stride(), r.dtype, r.device ) self.seen_storages.add(StorageWeakRef(r.untyped_storage())) else: n.meta["concrete_value"] = is_tuple return r def propagate(self, *args): with tqdm( desc="Saving intermediates for delta debugging", total=len(self.module.graph.nodes), disable=self.writer is None, ) as pbar: self.pbar = pbar r = super().run(*args) if not self.skip_offload: pbar.set_description( "Saved! To skip next time, run with --skip-saving-eager-intermediates" ) return r def is_load_tensor_node(node): return ( node.op == "call_function" and node.target is torch.ops.debugprims.load_tensor.default ) # inplace modifies node/inps def _convert_node_to_placeholder(graph, node, inps): if node.op == "output" or node.op == "placeholder": return False if is_load_tensor_node(node): return False concrete_val = node.meta.get("concrete_value", None) if isinstance(concrete_val, torch.Tensor): node.op = "placeholder" node.target = node.name node.args = () node.kwargs = {} inps.append(concrete_val) return True elif concrete_val is None: return False elif concrete_val is is_tuple: r = False for tuple_user in list(node.users): r = _convert_node_to_placeholder(graph, tuple_user, inps) or r # NB: We must not erase the node at this point, because # we are iterating over the nodes and this would change # the iteration order # graph.erase_node(node) return r elif isinstance(concrete_val, LoadTensorMeta): node.op = "call_function" node.target = torch.ops.debugprims.load_tensor.default node.args = ( os.path.join("eager", node.name), concrete_val.size, concrete_val.stride, ) node.kwargs = { "device": concrete_val.device, "dtype": concrete_val.dtype, } return True return False def create_minified_hlo_graph(minified_fx_graph, inputs): """ Takes minified FX graph as primary input, and ports it to HLO via StableHLO Provides minified HLO graph as output, and archive them to local directory """ hlo_dir = f"{os.getcwd()}/hlo_files" os.makedirs(hlo_dir, exists_ok=True) from torch_xla.stablehlo import save_torch_model_as_stablehlo save_torch_model_as_stablehlo(minified_fx_graph, inputs, hlo_dir) def dump_state(fx_g, inps): print( f""" # Working Repro with {len(fx_g.graph.nodes)} nodes inps = {[(i.shape, i.dtype, i.device.type) for i in inps]} inps = [torch.zeros(())] + [torch.ones(shape, dtype=dtype, device=device) for (shape, dtype, device) in inps] {fx_g.code} """ ) def is_power_of_two(n): if n == 0: return False return (n & (n - 1)) == 0 @dataclass class ReproState: graph: fx.Graph inps: List[torch.Tensor] def __post_init__(self): ph_nodes = get_placeholders(self.graph) assert len(ph_nodes) == len(self.inps) def minifier( fail_f: fx.GraphModule, inps, module_fails, dump_state: Callable = dump_state, *, save_dir=None, offload_to_disk=False, skip_offload=False, skip_sanity=False, max_granularity=None, ): """ Minimizes a FX graph with given inputs, such that the resulting FX graph still returns True for module_fails. Does 2 main strategies: 1. Truncates suffix: Removes some suffix from the graph and sets a new output. 2. Delta Debugging: Tries replacing half of the graph with inputs. If fails, tries replacing quarter of the graph, etc. >>> # xdoctest: +SKIP(failing) >>> failing_function = fx.symbolic_trace(f) >>> minimize(failing_function, [torch.randn(5)], lambda fx_g, inps: fx_g(*inps)) note: module_fails returns True if it fails. """ assert isinstance(inps, (tuple, list)) failing_graph = fail_f.graph cur_size = len(failing_graph.nodes) if max_granularity is not None and not is_power_of_two(max_granularity): raise RuntimeError(f"max_granularity {max_granularity} not power of two") num_queries = 0 def deepcopy_fx_graph(fx_graph): return fx.GraphModule(fail_f, copy.deepcopy(fx_graph)).graph def graph_fails(graph, inps): nonlocal num_queries graph = copy.deepcopy(graph) num_queries += 1 mod = fx.GraphModule(fail_f, graph) mod.graph.lint() return module_fails(mod, inps) writer = None if offload_to_disk: writer = ContentStoreWriter(save_dir) ConcreteProp(fail_f, writer=writer, skip_offload=skip_offload).propagate(*inps) if not skip_sanity and not graph_fails(failing_graph, inps): raise RuntimeError("Input graph did not fail the tester") print(f"Started off with {cur_size} nodes", file=sys.stderr) def _register_strategy(strategy: Callable, name: str): @wraps(strategy) def new_func(old_state: ReproState, granularity=1): print(file=sys.stderr) print( f"Strategy: {name} (G: {granularity}) " f"({len(old_state.graph.nodes)} nodes, {len(old_state.inps)} inputs)", file=sys.stderr, ) new_state = strategy( deepcopy_fx_graph(old_state.graph), list(old_state.inps), granularity ) if new_state is not None: new_nodes = len(new_state.graph.nodes) old_nodes = len(old_state.graph.nodes) new_inps = len(new_state.inps) old_inps = len(old_state.inps) new_outs = len(get_outputs(new_state.graph)) old_outs = len(get_outputs(old_state.graph)) progress_made = False if new_nodes < old_nodes: progress_made = True print( f"SUCCESS: Went from {old_nodes} to {new_nodes} nodes", file=sys.stderr, ) if new_inps > old_inps: progress_made = True print( f"SUCCESS: Went from {old_inps} to {new_inps} inputs", file=sys.stderr, ) if new_outs < old_outs: progress_made = True print( f"SUCCESS: Went from {old_outs} to {new_outs} outputs", file=sys.stderr, ) if not progress_made: raise RuntimeError("Success raised but no progress made?") if not graph_fails(new_state.graph, new_state.inps): print( "WARNING: Something went wrong, not applying this minification", file=sys.stderr, ) return None return new_state else: print(f"FAIL: {name}", file=sys.stderr) return None return new_func def register_strategy(name: str): return partial(_register_strategy, name=name) @register_strategy("Truncate suffix") def remove_suffix(cur_graph, cur_inps, granularity): tested = set() new_graph = fx.Graph() env = {} for idx, node in enumerate(cur_graph.nodes): new_node = new_graph.node_copy(node, lambda x: env[x]) if node.op not in ["placeholder", "output"]: # If idx is divisible by (granularity * 2), it would have been checked already. if ( idx % granularity == 0 and (idx % (granularity * 2) != 0) and idx not in tested ): output_node = new_graph.output((new_node,)) if len(new_graph.nodes) < len(cur_graph.nodes) and graph_fails( new_graph, cur_inps ): return ReproState(new_graph, cur_inps) else: tested.add(idx) new_graph.erase_node(output_node) env[node] = new_node return None @register_strategy("Remove outputs") def remove_outputs(cur_graph, cur_inps, granularity): granularity = max(1, granularity // 2) for idx, node in enumerate(cur_graph.nodes): node.idx = idx if node.op == "output": output = node break if isinstance(output.args[0], fx.Node): return None output_args = sorted( output.args[0], key=lambda x: x.idx if isinstance(x, fx.Node) else int(1e9) ) if len(output_args) == 1: return None for idx in range(0, len(output_args), granularity): output.args = (output_args[:idx] + output_args[idx + granularity :],) if graph_fails(cur_graph, cur_inps): return ReproState(cur_graph, cur_inps) return None def remove_unused_inputs_unchecked(cur_state: ReproState): cur_graph = cur_state.graph cur_inps = cur_state.inps ph_nodes = get_placeholders(cur_graph) assert len(ph_nodes) == len(cur_inps) new_inps = [] for idx in range(len(ph_nodes)): if len(ph_nodes[idx].users) == 0: cur_graph.erase_node(ph_nodes[idx]) else: new_inps.append(cur_inps[idx]) if len(new_inps) < len(cur_inps): return ReproState(cur_graph, new_inps) return None def remove_unused_inputs_checked(cur_state: ReproState): new_state = remove_unused_inputs_unchecked(cur_state) if new_state is not None and graph_fails(new_state.graph, new_state.inps): return new_state return None def _remove_unused_wrapper(cur_graph, cur_inps, granularity): return remove_unused_inputs_checked(ReproState(cur_graph, cur_inps)) remove_unused_inputs = register_strategy("Remove unused inputs")( _remove_unused_wrapper ) @register_strategy("Eliminate dead code") def eliminate_dead_code(cur_graph, cur_inps, granularity): if cur_graph.eliminate_dead_code() and graph_fails(cur_graph, cur_inps): return ReproState(cur_graph, cur_inps) return None def _consolidate_placeholders(cur_graph, inps): new_graph = fx.Graph() env = {} seen_non_placeholder = False # Move all placeholders to the front; also, if any load_tensor # is at the front, convert it into an input (because it can be live # all the time) for node in cur_graph.nodes: if node.op == "placeholder": new_node = new_graph.node_copy(node, lambda x: env[x]) env[node] = new_node elif not seen_non_placeholder and is_load_tensor_node(node): new_node = new_graph.placeholder(node.name) env[node] = new_node inps.append( torch.ops.debugprims.load_tensor.default(*node.args, **node.kwargs) ) else: seen_non_placeholder = True # Move everyone else for node in cur_graph.nodes: if node not in env: new_node = new_graph.node_copy(node, lambda x: env[x]) env[node] = new_node return new_graph @register_strategy("Delta Debugging") def delta_debugging(cur_graph: fx.Graph, cur_inps, granularity): num_nodes = len(cur_graph.nodes) for start_range in range(0, num_nodes, granularity): is_removing = False new_graph = deepcopy_fx_graph(cur_graph) new_inps = cur_inps[:] end_range = min(num_nodes, start_range + granularity) for idx in range(start_range, end_range): new_node = list(new_graph.nodes)[idx] if _convert_node_to_placeholder(new_graph, new_node, new_inps): is_removing = True if not is_removing: continue new_graph.eliminate_dead_code() new_graph = _consolidate_placeholders(new_graph, new_inps) new_state = remove_unused_inputs_unchecked(ReproState(new_graph, new_inps)) if new_state is None: new_state = ReproState(new_graph, new_inps) if graph_fails(new_state.graph, new_state.inps): return ReproState(new_state.graph, new_state.inps) return None @register_strategy("Consolidate Inputs") def consolidate_inputs(cur_graph, cur_inps, granularity): old_len = len(cur_inps) cur_graph = _consolidate_placeholders(cur_graph, cur_inps) if len(cur_inps) > old_len and graph_fails(cur_graph, cur_inps): return ReproState(cur_graph, cur_inps) return None failing_state = ReproState(failing_graph, inps) def try_granularity(failing_state, granularity, use_non_granular): print(f"Trying granularity {granularity}", file=sys.stderr) strategies = [] num_nodes = len(failing_state.graph.nodes) num_outputs = len(get_outputs(failing_state.graph)) if num_outputs > num_nodes // 2: strategies += [remove_outputs] if use_non_granular: strategies += [ eliminate_dead_code, remove_unused_inputs, consolidate_inputs, ] strategies += [remove_suffix, delta_debugging] for strategy in strategies: new_state = strategy(failing_state, granularity) if new_state is not None: return new_state return None while True: dump_state(fx.GraphModule(fail_f, failing_state.graph), failing_state.inps) granularity = int(2 ** (math.floor(math.log2(len(failing_state.graph.nodes))))) if max_granularity is not None: granularity = min(max_granularity, granularity) new_state = try_granularity(failing_state, granularity, use_non_granular=True) if new_state is not None: failing_state = new_state continue granularity //= 2 has_progress = False while granularity >= 1: new_state = try_granularity( failing_state, granularity, use_non_granular=False ) if new_state is not None: failing_state = new_state has_progress = True break granularity //= 2 if has_progress: continue new_state = remove_outputs(failing_state, 1) if new_state is not None: failing_state = new_state continue break if not graph_fails(failing_state.graph, failing_state.inps): raise RuntimeError("Uh oh, something went wrong :( Final graph is not failing") print(f"Made {num_queries} queries", file=sys.stderr) failing_fx = fx.GraphModule(fail_f, failing_state.graph) # If XLA debugging environment is enabled, create minified HLO graph as well if "XLA_HLO_DEBUG" in os.environ: create_minified_hlo_graph(failing_fx, failing_state.inps) dump_state(failing_fx, failing_state.inps) print("Wrote minimal repro out to repro.py", file=sys.stderr) return failing_fx, failing_state.inps