# mypy: allow-untyped-defs import torch import torch.ao.nn.intrinsic as nni __all__ = ["BatchNorm2d", "BatchNorm3d"] class _BatchNorm(torch.nn.modules.batchnorm._BatchNorm): def __init__( self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__(num_features, eps, momentum, True, True, **factory_kwargs) self.register_buffer("scale", torch.tensor(1.0, **factory_kwargs)) self.register_buffer("zero_point", torch.tensor(0, **factory_kwargs)) @staticmethod def from_float(cls, mod, use_precomputed_fake_quant=False): activation_post_process = mod.activation_post_process if type(mod) == cls._NNI_BN_RELU_MODULE: mod = mod[0] scale, zero_point = activation_post_process.calculate_qparams() new_mod = cls(mod.num_features, mod.eps) new_mod.weight = mod.weight new_mod.bias = mod.bias new_mod.running_mean = mod.running_mean new_mod.running_var = mod.running_var new_mod.scale = scale new_mod.zero_point = zero_point return new_mod @classmethod def from_reference(cls, bn, output_scale, output_zero_point): qbn = cls( bn.num_features, bn.eps, bn.momentum, device=bn.weight.device, dtype=bn.weight.dtype, ) qbn.weight = bn.weight qbn.bias = bn.bias qbn.running_mean = bn.running_mean qbn.running_var = bn.running_var qbn.scale = output_scale qbn.zero_point = output_zero_point return qbn class BatchNorm2d(_BatchNorm): r"""This is the quantized version of :class:`~torch.nn.BatchNorm2d`.""" _NNI_BN_RELU_MODULE = nni.BNReLU2d def __init__( self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__(num_features, eps, momentum, **factory_kwargs) def _get_name(self): return "QuantizedBatchNorm2d" def _check_input_dim(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 4: raise ValueError("Input shape must be `(N, C, H, W)`!") def forward(self, input: torch.Tensor) -> torch.Tensor: # disabling this since this is not symbolically traceable # self._check_input_dim(input) return torch.ops.quantized.batch_norm2d( input, self.weight, self.bias, self.running_mean, self.running_var, self.eps, self.scale, self.zero_point, ) @classmethod def from_float(cls, mod, use_precomputed_fake_quant=False): return _BatchNorm.from_float( cls, mod, use_precomputed_fake_quant=use_precomputed_fake_quant ) class BatchNorm3d(_BatchNorm): r"""This is the quantized version of :class:`~torch.nn.BatchNorm3d`.""" _NNI_BN_RELU_MODULE = nni.BNReLU3d def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None): factory_kwargs = {"device": device, "dtype": dtype} super().__init__(num_features, eps, momentum, **factory_kwargs) def _get_name(self): return "QuantizedBatchNorm3d" def _check_input_dim(self, input): # Temporarily using len(shape) instead of ndim due to JIT issue # https://github.com/pytorch/pytorch/issues/23890 if len(input.shape) != 5: raise ValueError("Input shape must be `(N, C, H, W)`!") def forward(self, input: torch.Tensor) -> torch.Tensor: # disabling this since this is not symbolically traceable # self._check_input_dim(input) return torch.ops.quantized.batch_norm3d( input, self.weight, self.bias, self.running_mean, self.running_var, self.eps, self.scale, self.zero_point, ) @classmethod def from_float(cls, mod, use_precomputed_fake_quant=False): return _BatchNorm.from_float( cls, mod, use_precomputed_fake_quant=use_precomputed_fake_quant )