# mypy: allow-untyped-defs from dataclasses import dataclass from functools import partial from typing import Any, Callable, Optional, Tuple import torch from torch._higher_order_ops.out_dtype import out_dtype from torch.ao.quantization.fx._decomposed import quantized_decomposed_lib # noqa: F401 from torch.ao.quantization.pt2e.export_utils import _WrapperModule from torch.ao.quantization.pt2e.utils import ( _get_aten_graph_module_for_pattern, _replace_literals_with_existing_placeholders, _replace_literals_with_new_placeholders, remove_tensor_overload_for_qdq_ops, ) from torch.fx import GraphModule from torch.fx.subgraph_rewriter import replace_pattern __all__ = [ "reference_representation_rewrite", ] _QUANTIZED_LINEAR_EXAMPLE_INPUTS = ( torch.randint(-128, 127, (2, 5), dtype=torch.int8), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.tensor([-128], dtype=torch.int), torch.tensor([127], dtype=torch.int), torch.randint(-128, 127, (5, 5), dtype=torch.int8), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.tensor([-127], dtype=torch.int), torch.tensor([127], dtype=torch.int), torch.randn(1, dtype=torch.float), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.tensor([-128], dtype=torch.int), torch.tensor([127], dtype=torch.int), ) def _qdq_quantized_linear( x_i8, x_scale, x_zero_point, x_quant_min, x_quant_max, weight_i8, weight_scale, weight_zero_point, weight_quant_min, weight_quant_max, bias_fp32, out_scale, out_zero_point, out_quant_min, out_quant_max, ): x_fp32 = torch.ops.quantized_decomposed.dequantize_per_tensor( x_i8, x_scale, x_zero_point, x_quant_min, x_quant_max, torch.int8 ) weight_fp32 = torch.ops.quantized_decomposed.dequantize_per_tensor( weight_i8, weight_scale, weight_zero_point, weight_quant_min, weight_quant_max, torch.int8, ) out_fp32 = torch.ops.aten.linear.default(x_fp32, weight_fp32, bias_fp32) out_i8 = torch.ops.quantized_decomposed.quantize_per_tensor( out_fp32, out_scale, out_zero_point, out_quant_min, out_quant_max, torch.int8 ) return out_i8 def _reference_quantized_linear( x_i8, x_scale, x_zero_point, x_quant_min, x_quant_max, weight_i8, weight_scale, weight_zero_point, weight_quant_min, weight_quant_max, bias_fp32, out_scale, out_zero_point, out_quant_min, out_quant_max, ): # without using quant_min/max in clamp, the traced graph will not have quant_mi/max args. # This results in failure to match the pattern. # Therefore, we call a torch.ops.aten.clamp here x_i8 = torch.ops.aten.clamp(x_i8, x_quant_min, x_quant_max) weight_i8 = torch.ops.aten.clamp(weight_i8, weight_quant_min, weight_quant_max) x_i16 = x_i8.to(torch.int16) weight_i16 = weight_i8.to(torch.int16) # always set bias to None so that the same representation can work for the case # no matter if bias_scale == x_scale * weight_scale or not acc_i32 = out_dtype( torch.ops.aten.linear.default, torch.int32, x_i16 - x_zero_point, weight_i16 - weight_zero_point, None, ) # TODO: change to mul.Scalar # Note: we are quantizing bias with these scales without signal from user, but it might be OK bias_scale = x_scale * weight_scale bias_i32 = out_dtype(torch.ops.aten.div.Tensor, torch.int32, bias_fp32, bias_scale) acc_i32 = acc_i32 + bias_i32 # TODO: change to mul.Scalar when we make x_scale/weight_scale etc. Scalar values acc_i32 = ( out_dtype( torch.ops.aten.mul.Tensor, torch.int32, acc_i32, x_scale * weight_scale / out_scale, ) + out_zero_point ) out_i8 = torch.ops.aten.clamp(acc_i32, out_quant_min, out_quant_max).to(torch.int8) return out_i8 _DYNAMIC_QUANTIZED_LINEAR_EXAMPLE_INPUTS = ( torch.randn((2, 5), dtype=torch.float), -128, 127, torch.finfo(torch.float32).eps, torch.randint(-128, 127, (5, 5), dtype=torch.int8), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.tensor([-127], dtype=torch.int), torch.tensor([127], dtype=torch.int), torch.randn(1, dtype=torch.float), ) def _qdq_dynamic_quantized_linear( x_fp32, x_quant_min, x_quant_max, x_eps, weight_i8, weight_scale, weight_zero_point, weight_quant_min, weight_quant_max, bias_fp32, ): x_scale, x_zero_point = torch.ops.quantized_decomposed.choose_qparams( x_fp32, x_quant_min, x_quant_max, x_eps, torch.int8 ) x_i8 = torch.ops.quantized_decomposed.quantize_per_tensor( x_fp32, x_scale, x_zero_point, x_quant_min, x_quant_max, torch.int8 ) x_fp32 = torch.ops.quantized_decomposed.dequantize_per_tensor( x_i8, x_scale, x_zero_point, x_quant_min, x_quant_max, torch.int8 ) weight_fp32 = torch.ops.quantized_decomposed.dequantize_per_tensor( weight_i8, weight_scale, weight_zero_point, weight_quant_min, weight_quant_max, torch.int8, ) out_fp32 = torch.ops.aten.linear.default(x_fp32, weight_fp32, bias_fp32) return out_fp32 def _reference_dynamic_quantized_linear( x_fp32, x_quant_min, x_quant_max, x_eps, weight_i8, weight_scale, weight_zero_point, weight_quant_min, weight_quant_max, bias_fp32, ): x_scale, x_zero_point = torch.ops.quantized_decomposed.choose_qparams( x_fp32, x_quant_min, x_quant_max, x_eps, torch.int8 ) # decomposed representation for quantize_per_tensor # TODO: use out_dtype(mul, ...) here when the op is ready x_fp32 = x_fp32 / x_scale # fp32 # round modes might be different here # pytorch is rounding to even, which is also common for most of the backends x_fp32 = torch.round(x_fp32) # fp32 x_i32 = x_fp32.to(dtype=torch.int32) # int32 x_i32 = x_i32 + x_zero_point # int32 # clamp works for fp32, int32 and int8 dtypes x_i32 = torch.clamp(x_i32, x_quant_min, x_quant_max) # int32 x_i8 = x_i32.to(dtype=torch.int8) weight_i8 = torch.ops.aten.clamp(weight_i8, weight_quant_min, weight_quant_max) x_i16 = x_i8.to(torch.int16) weight_i16 = weight_i8.to(torch.int16) # always set bias to None so that the same representation can work for the case # no matter if bias_scale == x_scale * weight_scale or not acc_i32 = out_dtype( torch.ops.aten.linear.default, torch.int32, x_i16 - x_zero_point, weight_i16 - weight_zero_point, None, ) bias_scale = x_scale * weight_scale bias_i32 = out_dtype(torch.ops.aten.div.Tensor, torch.int32, bias_fp32, bias_scale) acc_i32 = acc_i32 + bias_i32 out_fp32 = acc_i32 * (x_scale * weight_scale) return out_fp32 _QUANTIZED_CONV2d_EXAMPLE_INPUTS = ( torch.randint(-128, 127, (1, 3, 3, 3), dtype=torch.int8), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.tensor([-128], dtype=torch.int), torch.tensor([127], dtype=torch.int), torch.randint(-128, 127, (1, 3, 3, 3), dtype=torch.int8), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.tensor([-127], dtype=torch.int), torch.tensor([127], dtype=torch.int), torch.randn(1, dtype=torch.float), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.tensor([-128], dtype=torch.int), torch.tensor([127], dtype=torch.int), ) def _qdq_quantized_conv2d( x_i8, x_scale, x_zero_point, x_quant_min, x_quant_max, weight_i8, weight_scale, weight_zero_point, weight_quant_min, weight_quant_max, bias_fp32, out_scale, out_zero_point, out_quant_min, out_quant_max, ): stride = [1, 1] padding = [0, 0] dilation = [1, 1] transposed = False output_padding = [0, 0] groups = 1 x_fp32 = torch.ops.quantized_decomposed.dequantize_per_tensor( x_i8, x_scale, x_zero_point, x_quant_min, x_quant_max, torch.int8 ) weight_fp32 = torch.ops.quantized_decomposed.dequantize_per_tensor( weight_i8, weight_scale, weight_zero_point, weight_quant_min, weight_quant_max, torch.int8, ) out_fp32 = torch.ops.aten.convolution.default( x_fp32, weight_fp32, bias_fp32, stride, padding, dilation, transposed, output_padding, groups, ) out_i8 = torch.ops.quantized_decomposed.quantize_per_tensor( out_fp32, out_scale, out_zero_point, out_quant_min, out_quant_max, torch.int8 ) return out_i8 def _reference_quantized_conv2d( x_i8, x_scale, x_zero_point, x_quant_min, x_quant_max, weight_i8, weight_scale, weight_zero_point, weight_quant_min, weight_quant_max, bias_fp32, out_scale, out_zero_point, out_quant_min, out_quant_max, ): stride = [1, 1] padding = [0, 0] dilation = [1, 1] transposed = False output_padding = [0, 0] groups = 1 # without using quant_min/max in clamp, the traced graph will not have quant_mi/max args. # This results in failure to match the pattern. # Therefore, we call a torch.ops.aten.clamp here x_i8 = torch.ops.aten.clamp(x_i8, x_quant_min, x_quant_max) weight_i8 = torch.ops.aten.clamp(weight_i8, weight_quant_min, weight_quant_max) x_i16 = x_i8.to(torch.int16) weight_i16 = weight_i8.to(torch.int16) # always set bias to None so that the same representation can work for the case # no matter if bias_scale == x_scale * weight_scale or not acc_i32 = out_dtype( torch.ops.aten.convolution.default, torch.int32, x_i16 - x_zero_point, weight_i16 - weight_zero_point, None, stride, padding, dilation, transposed, output_padding, groups, ) # Note: we are quantizing bias with these scales without signal from user, but it might be OK bias_scale = x_scale * weight_scale # bias quantization to int32 uses bias_scale = x_scale * weight_scale due to: # Take linear calculation for example # Out_(i, j)_fp32 = Sum_(over k)[X_(i, k)_fp32 * W_(i, k)_fp32] + bias_(i)_fp32 # Represent X, W fp32 as their dequant transforms # A_fp32 = (A_q - A_zero_point)/A_scale # Out_(i, j)_fp32 = Sum_(over k)[(X_(i, k)_fp32 - X_zp) * X_scale * (W_(i, k)_fp32 - W_zp) * W_scale] + bias_(i)_fp32 # Factor out X_scale and W_scale # Out_(i, j)_fp32 = ((X_scale * W_scale) * Sum_(over k)[(X_(i, k)_fp32 - X_zp) * (W_(i, k)_fp32 - W_zp)]) + bias_(i)_fp32 # In order to addition of bias_(i)_fp32 inside, we must do # Out_(i, j)_fp32 = (X_scale * W_scale) * (Sum_(over k)[(X_(i, k)_fp32 - X_zp) * (W_(i, k)_fp32 - W_zp)] + (1 / (X_scale * W_scale)) * bias_(i)_fp32)W_scale # noqa: B950 # Note we had to multiply bias_fp32 qith X_scale * W_scale = bias_scale # Thus bias quantization to int32 must be with X_scale * W_scale bias_i32 = out_dtype(torch.ops.aten.div.Tensor, torch.int32, bias_fp32, bias_scale) # Unsqueeze to match broadcast dims # Unfortnuately I cannot do bias_i32.unsqueeze(0) due to literal matching nightmare # in graph pattern replacement bias_i32 = bias_i32.unsqueeze(-1) bias_i32 = bias_i32.unsqueeze(-1) acc_i32 = acc_i32 + bias_i32 # TODO: change to mul.Scalar when we make x_scale/weight_scale etc. Scalar values acc_i32 = ( out_dtype( torch.ops.aten.mul.Tensor, torch.int32, acc_i32, x_scale * weight_scale / out_scale, ) + out_zero_point ) out_i8 = torch.ops.aten.clamp(acc_i32, out_quant_min, out_quant_max).to(torch.int8) return out_i8 _QUANTIZED_ADD_OR_ADD_RELU_EXAMPLE_INPUTS = ( torch.randint(-128, 127, (1, 3, 3, 3), dtype=torch.int8), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.randint(-128, 127, (1, 3, 3, 3), dtype=torch.int8), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.tensor([-128], dtype=torch.int), torch.tensor([127], dtype=torch.int), ) def _qdq_quantized_add_relu( x_i8, x_scale, x_zero_point, y_i8, y_scale, y_zero_point, out_scale, out_zero_point, quant_min, quant_max, ): x_fp32 = torch.ops.quantized_decomposed.dequantize_per_tensor( x_i8, x_scale, x_zero_point, quant_min, quant_max, torch.int8 ) y_fp32 = torch.ops.quantized_decomposed.dequantize_per_tensor( y_i8, y_scale, y_zero_point, quant_min, quant_max, torch.int8 ) out_fp32 = x_fp32 + y_fp32 out_fp32 = torch.ops.aten.relu(out_fp32) out_i8 = torch.ops.quantized_decomposed.quantize_per_tensor( out_fp32, out_scale, out_zero_point, quant_min, quant_max, torch.int8 ) return out_i8 def _reference_quantized_add_relu( x_i8, x_scale, x_zero_point, y_i8, y_scale, y_zero_point, out_scale, out_zero_point, quant_min, quant_max, ): """ See comments for `_reference_quantized_add` for more information on how to derive the formula for out_i8 based on x_i8 and y_i8 """ x_i32 = x_i8.to(torch.int32) y_i32 = y_i8.to(torch.int32) # TODO: change this to mul.Scalar? x_i32 = out_dtype( torch.ops.aten.mul.Tensor, torch.int32, (x_i32 - x_zero_point), (x_scale / out_scale), ) y_i32 = out_dtype( torch.ops.aten.mul.Tensor, torch.int32, (y_i32 - y_zero_point), (y_scale / out_scale), ) out_i32 = x_i32 + y_i32 + out_zero_point # out_i32 = torch.ops.aten.clamp(out_i32, out_zero_point) out_i8 = torch.ops.aten.clamp(out_i32, out_zero_point, quant_max).to(torch.int8) return out_i8 def _qdq_quantized_add( x_i8, x_scale, x_zero_point, y_i8, y_scale, y_zero_point, out_scale, out_zero_point, quant_min, quant_max, ): x_fp32 = torch.ops.quantized_decomposed.dequantize_per_tensor( x_i8, x_scale, x_zero_point, quant_min, quant_max, torch.int8 ) y_fp32 = torch.ops.quantized_decomposed.dequantize_per_tensor( y_i8, y_scale, y_zero_point, quant_min, quant_max, torch.int8 ) out_fp32 = x_fp32 + y_fp32 out_i8 = torch.ops.quantized_decomposed.quantize_per_tensor( out_fp32, out_scale, out_zero_point, quant_min, quant_max, torch.int8 ) return out_i8 def _reference_quantized_add( x_i8, x_scale, x_zero_point, y_i8, y_scale, y_zero_point, out_scale, out_zero_point, quant_min, quant_max, ): """ # How to Derive the formula for out_i8 based on x_i8 and y_i8 # (since quantized add takes x_i8, y_i8 and their quantization parameters, and produce an out_i8) # out_i8 is quantized output, we can write down the formula for it first: out_i8 = out_f32 / out_scale + out_zero_point (1) # then out_fp32 is computed from x_f32 + y_f32, and the x_fp32 and y_fp32 are the dequantized x_i8 and y_i8 out_f32 = x_f32 + y_f32 (2) x_fp32 = (x_i8 - x_zero_point) * x_scale (3) y_fp32 = (y_i8 - y_zero_point) * y_scale (4) # applying the above fomula to the out_i8 equation we can get the following: out_i8 = out_fp32 / out_scale + out_zero_point # (1) = (x_f32 + y_f32) / out_scale + out_zero_point # applying (2) to substitute out_fp32 with x_fp32 + y_fp32 = ((x_i8 - x_zero_point) * x_scale + (y_i8 - y_zero_point) * y_scale) / out_scale + out_zero_point # apply (3) and (4) """ x_i32 = x_i8.to(torch.int32) y_i32 = y_i8.to(torch.int32) # TODO: use out_dtype op x_i32 = torch.round((x_scale / out_scale) * (x_i32 - x_zero_point)).to(torch.int32) y_i32 = torch.round((y_scale / out_scale) * (y_i32 - y_zero_point)).to(torch.int32) out_i32 = x_i32 + y_i32 + out_zero_point quant_min = -128 quant_max = 127 out_i8 = torch.ops.aten.clamp(out_i32, quant_min, quant_max).to(torch.int8) return out_i8 _QUANTIZED_MAX_POOL2D_EXAMPLE_INPUTS = ( torch.randint(-128, 127, (1, 3, 3, 3), dtype=torch.int8), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.tensor([-128], dtype=torch.int), torch.tensor([127], dtype=torch.int), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.tensor([-128], dtype=torch.int), torch.tensor([127], dtype=torch.int), ) def _qdq_quantized_max_pool2d( x_i8, x_scale, x_zero_point, x_quant_min, x_quant_max, out_scale, out_zero_point, out_quant_min, out_quant_max, ): kernel_size = 1 stride = 1 padding = 0 dilation = 1 ceil_mode = False x_fp32 = torch.ops.quantized_decomposed.dequantize_per_tensor( x_i8, x_scale, x_zero_point, x_quant_min, x_quant_max, torch.int8 ) out_fp32, _ = torch.ops.aten.max_pool2d_with_indices.default( x_fp32, kernel_size, stride, padding, dilation, ceil_mode ) out_i8 = torch.ops.quantized_decomposed.quantize_per_tensor( out_fp32, out_scale, out_zero_point, out_quant_min, out_quant_max, torch.int8 ) return out_i8 def _reference_quantized_max_pool2d( x_i8, x_scale, x_zero_point, x_quant_min, x_quant_max, out_scale, out_zero_point, out_quant_min, out_quant_max, ): kernel_size = 1 stride = 1 padding = 0 dilation = 1 ceil_mode = False # to preserve x_quant_min, x_quant_max in the graph for pattern matching x_i8 = torch.clamp(x_i8, x_quant_min, x_quant_max) x_i32 = x_i8.to(torch.int32) out_i32, _ = torch.ops.aten.max_pool2d_with_indices.default( x_i32 - x_zero_point, kernel_size, stride, padding, dilation, ceil_mode ) out_fp32 = out_i32 * (x_scale / out_scale) + out_zero_point out_fp32 = torch.clamp(out_fp32, out_quant_min, out_quant_max) out_i8 = out_fp32.to(torch.int8) return out_i8 _QUANTIZE_PER_TENSOR_INT8_EXAMPLE_INPUTS = ( torch.randn(1, 3, 3, 3, dtype=torch.float), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.tensor([-128], dtype=torch.int), torch.tensor([127], dtype=torch.int), ) def _quantize_per_tensor_int8(x_fp32, scale, zero_point, quant_min, quant_max): x = torch.ops.quantized_decomposed.quantize_per_tensor( x_fp32, scale, zero_point, quant_min, quant_max, torch.int8 ) return x def _reference_quantize_per_tensor_int8( x_fp32, scale, zero_point, quant_min, quant_max ): # TODO: use out_dtype(mul, ...) here when the op is ready x = x_fp32 / scale # fp32 # round modes might be different here # pytorch is rounding to even, which is also common for most of the backends x = torch.round(x) # fp32 x = x.to(dtype=torch.int32) # int32 x = x + zero_point # int32 # clamp works for fp32, int32 and int8 dtypes x = torch.clamp(x, quant_min, quant_max) # int32 x = x.to(dtype=torch.int8) return x _DEQUANTIZE_PER_TENSOR_INT8_EXAMPLE_INPUTS = ( torch.randint(-128, 127, (1, 3, 3, 3), dtype=torch.int8), torch.randn(1, dtype=torch.float), torch.zeros(1, dtype=torch.int), torch.tensor([-128], dtype=torch.int), torch.tensor([127], dtype=torch.int), ) def _dequantize_per_tensor_int8(x_i8, scale, zero_point, quant_min, quant_max): x_fp32 = torch.ops.quantized_decomposed.dequantize_per_tensor( x_i8, scale, zero_point, quant_min, quant_max, torch.int8 ) return x_fp32 def _reference_dequantize_per_tensor_int8( x_i8, scale, zero_point, quant_min, quant_max ): # without using quant_min/max in clamp, the traced graph will not have quant_mi/max args. # This results in failure to match the pattern. # Therefore, we call a torch.ops.aten.clamp here x_i8 = torch.ops.aten.clamp(x_i8, quant_min, quant_max) # TODO: use out_dtype op # note: x_i8.to(torch.int32) does not work here # TODO: debug the implementation later when torchdynamo time out issue is resolved return ((x_i8.to(torch.float32) - zero_point) * scale).to(dtype=torch.float32) _QUANTIZE_PER_CHANNEL_INT8_EXAMPLE_INPUTS = ( torch.randn(1, 3, 3, 3, dtype=torch.float), torch.randn(3, dtype=torch.float), torch.zeros(3, dtype=torch.int), 1, -128, 127, ) def _quantize_per_channel_int8( x_fp32, scales, zero_points, ch_axis, quant_min, quant_max ): out_i8 = torch.ops.quantized_decomposed.quantize_per_channel( x_fp32, scales, zero_points, ch_axis, quant_min, quant_max, torch.int8 ) return out_i8 def _reference_quantize_per_channel_int8( x_fp32, scales, zero_points, ch_axis, quant_min, quant_max ): x_fp32 = torch.transpose(x_fp32, ch_axis, -1) out_i32 = torch.ops.aten.clamp( torch.round(x_fp32 / scales).to(torch.int32) + zero_points, quant_min, quant_max ) out_i32 = torch.transpose(out_i32, ch_axis, -1) return out_i32.to(torch.int8) _DEQUANTIZE_PER_CHANNEL_INT8_EXAMPLE_INPUTS = ( torch.randint(-128, 127, (1, 3, 3, 3), dtype=torch.int8), torch.randn(3, dtype=torch.float), torch.zeros(3, dtype=torch.int), 1, -128, 127, ) def _dequantize_per_channel_int8( x_i8, scales, zero_points, ch_axis, quant_min, quant_max ): # the following will be replaced as placeholders out_fp32 = torch.ops.quantized_decomposed.dequantize_per_channel( x_i8, scales, zero_points, ch_axis, quant_min, quant_max, torch.int8 ) return out_fp32 def _reference_dequantize_per_channel_int8( x_i8, scales, zero_points, ch_axis, quant_min, quant_max ): # the following will be replaced as placeholders # in order to preserve the quant_min/quant_max args for pattern matching (e.g. matching for int4 quantized ops) # we call a torch.ops.aten.clamp here x_i8 = torch.ops.aten.clamp(x_i8, quant_min, quant_max) x_i8 = torch.transpose(x_i8, ch_axis, -1) x_i32 = x_i8.to(torch.int32) out_fp32 = (x_i32 - zero_points).to(torch.float) * scales out_fp32 = torch.transpose(out_fp32, ch_axis, -1) return out_fp32 def _replace_ph_qdq_per_channel_replacement(gm: torch.fx.GraphModule): return _replace_literals_with_existing_placeholders( gm, exclude_literals=[-1], literal_to_ph_idx={1: 3, -128: 4, 127: 5} ) @dataclass class _RewriteInfo: """Data needed for rewrite, this includes example inputs, pattern and replacement functions and post transformation functions for the exported pattern and replacement GraphModule """ # example inputs used for exporting the pattern into GraphModule example_inputs: Tuple[Any, ...] pattern: Callable replacement: Callable # post transformation on the exported pattern and replacement GraphModule pattern_post_trans: Optional[Callable[[GraphModule], GraphModule]] = None replacement_post_trans: Optional[Callable[[GraphModule], GraphModule]] = None _REWRITE_INFO_LIST = [ _RewriteInfo( _DYNAMIC_QUANTIZED_LINEAR_EXAMPLE_INPUTS, _WrapperModule(_qdq_dynamic_quantized_linear), _WrapperModule(_reference_dynamic_quantized_linear), partial( _replace_literals_with_existing_placeholders, literal_to_ph_idx={-128: 1, 127: 2, torch.finfo(torch.float32).eps: 3}, ), partial( _replace_literals_with_existing_placeholders, literal_to_ph_idx={-128: 1, 127: 2, torch.finfo(torch.float32).eps: 3}, ), ), _RewriteInfo( _QUANTIZED_LINEAR_EXAMPLE_INPUTS, _WrapperModule(_qdq_quantized_linear), _WrapperModule(_reference_quantized_linear), _replace_literals_with_new_placeholders, _replace_literals_with_new_placeholders, ), _RewriteInfo( _QUANTIZED_CONV2d_EXAMPLE_INPUTS, _WrapperModule(_qdq_quantized_conv2d), _WrapperModule(_reference_quantized_conv2d), partial(_replace_literals_with_new_placeholders, exclude_literals=[-1]), partial(_replace_literals_with_new_placeholders, exclude_literals=[-1]), ), _RewriteInfo( _QUANTIZED_ADD_OR_ADD_RELU_EXAMPLE_INPUTS, _WrapperModule(_qdq_quantized_add_relu), _WrapperModule(_reference_quantized_add_relu), ), _RewriteInfo( _QUANTIZED_ADD_OR_ADD_RELU_EXAMPLE_INPUTS, _WrapperModule(_qdq_quantized_add), _WrapperModule(_reference_quantized_add), ), _RewriteInfo( _QUANTIZED_MAX_POOL2D_EXAMPLE_INPUTS, _WrapperModule(_qdq_quantized_max_pool2d), _WrapperModule(_reference_quantized_max_pool2d), _replace_literals_with_new_placeholders, _replace_literals_with_new_placeholders, ), _RewriteInfo( _QUANTIZE_PER_TENSOR_INT8_EXAMPLE_INPUTS, _WrapperModule(_quantize_per_tensor_int8), _WrapperModule(_reference_quantize_per_tensor_int8), ), _RewriteInfo( _DEQUANTIZE_PER_TENSOR_INT8_EXAMPLE_INPUTS, _WrapperModule(_dequantize_per_tensor_int8), _WrapperModule(_reference_dequantize_per_tensor_int8), ), _RewriteInfo( _QUANTIZE_PER_CHANNEL_INT8_EXAMPLE_INPUTS, _WrapperModule(_quantize_per_channel_int8), _WrapperModule(_reference_quantize_per_channel_int8), _replace_ph_qdq_per_channel_replacement, _replace_ph_qdq_per_channel_replacement, ), _RewriteInfo( _DEQUANTIZE_PER_CHANNEL_INT8_EXAMPLE_INPUTS, _WrapperModule(_dequantize_per_channel_int8), _WrapperModule(_reference_dequantize_per_channel_int8), _replace_ph_qdq_per_channel_replacement, _replace_ph_qdq_per_channel_replacement, ), ] def reference_representation_rewrite(model: GraphModule) -> GraphModule: remove_tensor_overload_for_qdq_ops(model) for rewrite_info in _REWRITE_INFO_LIST: example_inputs = rewrite_info.example_inputs pattern = rewrite_info.pattern replacement = rewrite_info.replacement pattern_post_trans = rewrite_info.pattern_post_trans replacement_post_trans = rewrite_info.replacement_post_trans pattern = _get_aten_graph_module_for_pattern(pattern, example_inputs) # type: ignore[arg-type, assignment] remove_tensor_overload_for_qdq_ops(pattern) # type: ignore[arg-type] replacement = _get_aten_graph_module_for_pattern(replacement, example_inputs) # type: ignore[arg-type, assignment] remove_tensor_overload_for_qdq_ops(replacement) # type: ignore[arg-type] if pattern_post_trans: pattern = pattern_post_trans(pattern) if replacement_post_trans: replacement = replacement_post_trans(replacement) pattern.recompile() # type: ignore[attr-defined] replacement.recompile() # type: ignore[attr-defined] matches = replace_pattern(model, pattern, replacement) return model