# mypy: ignore-errors import os from torchvision import datasets, transforms import torch import torch._lazy import torch._lazy.metrics import torch._lazy.ts_backend import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim.lr_scheduler import StepLR torch._lazy.ts_backend.init() class Net(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(log_interval, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad(set_to_none=True) output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() torch._lazy.mark_step() if batch_idx % log_interval == 0: print( f"Train Epoch: {epoch} " f"[{batch_idx * len(data)}/{len(train_loader.dataset)} ({100.0 * batch_idx / len(train_loader):.0f}%)]" f"\tLoss: {loss.item():.6f}" ) if __name__ == "__main__": bsz = 64 device = "lazy" epochs = 14 log_interval = 10 lr = 1 gamma = 0.7 train_kwargs = {"batch_size": bsz} # if we want to use CUDA if "LTC_TS_CUDA" in os.environ: cuda_kwargs = { "num_workers": 1, "pin_memory": True, "shuffle": True, "batch_size": bsz, } train_kwargs.update(cuda_kwargs) transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ) dataset1 = datasets.MNIST("./data", train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=lr) scheduler = StepLR(optimizer, step_size=1, gamma=gamma) for epoch in range(1, epochs + 1): train(log_interval, model, device, train_loader, optimizer, epoch) scheduler.step()