r"""Quantized Modules. Note:: The `torch.nn.quantized` namespace is in the process of being deprecated. Please, use `torch.ao.nn.quantized` instead. """ # The following imports are needed in case the user decides # to import the files directly, # s.a. `from torch.nn.quantized.modules.conv import ...`. # No need to add them to the `__all__`. from torch.ao.nn.quantized.modules import ( activation, batchnorm, conv, DeQuantize, dropout, embedding_ops, functional_modules, linear, MaxPool2d, normalization, Quantize, rnn, utils, ) from torch.ao.nn.quantized.modules.activation import ( ELU, Hardswish, LeakyReLU, MultiheadAttention, PReLU, ReLU6, Sigmoid, Softmax, ) from torch.ao.nn.quantized.modules.batchnorm import BatchNorm2d, BatchNorm3d from torch.ao.nn.quantized.modules.conv import ( Conv1d, Conv2d, Conv3d, ConvTranspose1d, ConvTranspose2d, ConvTranspose3d, ) from torch.ao.nn.quantized.modules.dropout import Dropout from torch.ao.nn.quantized.modules.embedding_ops import Embedding, EmbeddingBag from torch.ao.nn.quantized.modules.functional_modules import ( FloatFunctional, FXFloatFunctional, QFunctional, ) from torch.ao.nn.quantized.modules.linear import Linear from torch.ao.nn.quantized.modules.normalization import ( GroupNorm, InstanceNorm1d, InstanceNorm2d, InstanceNorm3d, LayerNorm, ) from torch.ao.nn.quantized.modules.rnn import LSTM __all__ = [ "BatchNorm2d", "BatchNorm3d", "Conv1d", "Conv2d", "Conv3d", "ConvTranspose1d", "ConvTranspose2d", "ConvTranspose3d", "DeQuantize", "ELU", "Embedding", "EmbeddingBag", "GroupNorm", "Hardswish", "InstanceNorm1d", "InstanceNorm2d", "InstanceNorm3d", "LayerNorm", "LeakyReLU", "Linear", "LSTM", "MultiheadAttention", "Quantize", "ReLU6", "Sigmoid", "Softmax", "Dropout", "PReLU", # Wrapper modules "FloatFunctional", "FXFloatFunctional", "QFunctional", ]