layout(builtin=15) float4 sk_FragCoord; //--- Luma ------------------------------------------------------------------------ half4 sk_luma(half3 color) { return saturate(dot(half3(0.2126, 0.7152, 0.0722), color)).000r; } //--- Decal ------------------------------------------------------------------------ half4 sk_decal(shader image, float2 coord, float4 decalBounds) { half4 d = half4(decalBounds - coord.xyxy) * half4(-1, -1, 1, 1); d = saturate(d + 0.5); return (d.x * d.y * d.z * d.w) * image.eval(coord); } //--- Displacement ----------------------------------------------------------------- half4 sk_displacement(shader displMap, shader colorMap, float2 coord, half2 scale, half4 xSelect, // Only one of RGBA will be 1, the rest are 0 half4 ySelect) { half4 displColor = unpremul(displMap.eval(coord)); half2 displ = half2(dot(displColor, xSelect), dot(displColor, ySelect)); displ = scale * (displ - 0.5); return colorMap.eval(coord + displ); } //--- Magnifier -------------------------------------------------------------------- half4 sk_magnifier(shader src, float2 coord, float4 lensBounds, float4 zoomXform, float2 invInset) { float2 zoomCoord = zoomXform.xy + zoomXform.zw*coord; // edgeInset is the smallest distance to the lens bounds edges, in units of "insets". float2 edgeInset = min(coord - lensBounds.xy, lensBounds.zw - coord) * invInset; // The equations for 'weight' ensure that it is 0 along the outside of // lensBounds so it seams with any un-zoomed, un-filtered content. The zoomed // content fills a rounded rectangle that is 1 "inset" in from lensBounds with // circular corners with radii equal to the inset distance. Outside of this // region, there is a non-linear weighting to compress the un-zoomed content // to the zoomed content. The critical zone about each corner is limited // to 2x"inset" square. float weight = all(lessThan(edgeInset, float2(2.0))) // Circular distortion weighted by distance to inset corner ? (2.0 - length(2.0 - edgeInset)) // Linear zoom, or single-axis compression outside of the inset // area (if delta < 1) : min(edgeInset.x, edgeInset.y); // Saturate before squaring so that negative weights are clamped to 0 // before squaring weight = saturate(weight); return src.eval(mix(coord, zoomCoord, weight*weight)); } //--- High Contrast ---------------------------------------------------------------- $pure half3 $high_contrast_rgb_to_hsl(half3 c) { half mx = max(max(c.r,c.g),c.b), mn = min(min(c.r,c.g),c.b), d = mx-mn, invd = 1.0 / d, g_lt_b = c.g < c.b ? 6.0 : 0.0; // We'd prefer to write these tests like `mx == c.r`, but on some GPUs, max(x,y) is // not always equal to either x or y. So we use long form, c.r >= c.g && c.r >= c.b. half h = (1/6.0) * (mx == mn ? 0.0 : /*mx==c.r*/ c.r >= c.g && c.r >= c.b ? invd * (c.g - c.b) + g_lt_b : /*mx==c.g*/ c.g >= c.b ? invd * (c.b - c.r) + 2.0 /*mx==c.b*/ : invd * (c.r - c.g) + 4.0); half sum = mx+mn, l = sum * 0.5, s = mx == mn ? 0.0 : d / (l > 0.5 ? 2.0 - sum : sum); return half3(h,s,l); } half3 sk_high_contrast(half3 color, half grayscale, half invertStyle, half contrast) { if (grayscale == 1) { color = dot(half3(0.2126, 0.7152, 0.0722), color).rrr; } if (invertStyle == 1) { // brightness color = 1.0 - color; } else if (invertStyle == 2) { // lightness color = $high_contrast_rgb_to_hsl(color); color.b = 1 - color.b; color = $hsl_to_rgb(color); } return saturate(mix(half3(0.5), color, contrast)); } //--- Normal ----------------------------------------------------------------------- $pure half3 $normal_filter(half3 alphaC0, half3 alphaC1, half3 alphaC2, half negSurfaceDepth) { // The right column (or bottom row) terms of the Sobel filter. The left/top is just the // negative, and the middle row/column is all 0s so those instructions are skipped. const half3 kSobel = 0.25 * half3(1,2,1); half3 alphaR0 = half3(alphaC0.x, alphaC1.x, alphaC2.x); half3 alphaR2 = half3(alphaC0.z, alphaC1.z, alphaC2.z); half nx = dot(kSobel, alphaC2) - dot(kSobel, alphaC0); half ny = dot(kSobel, alphaR2) - dot(kSobel, alphaR0); return normalize(half3(negSurfaceDepth * half2(nx, ny), 1)); } half4 sk_normal(shader alphaMap, float2 coord, float4 edgeBounds, half negSurfaceDepth) { half3 alphaC0 = half3( alphaMap.eval(clamp(coord + float2(-1,-1), edgeBounds.LT, edgeBounds.RB)).a, alphaMap.eval(clamp(coord + float2(-1, 0), edgeBounds.LT, edgeBounds.RB)).a, alphaMap.eval(clamp(coord + float2(-1, 1), edgeBounds.LT, edgeBounds.RB)).a); half3 alphaC1 = half3( alphaMap.eval(clamp(coord + float2( 0,-1), edgeBounds.LT, edgeBounds.RB)).a, alphaMap.eval(clamp(coord + float2( 0, 0), edgeBounds.LT, edgeBounds.RB)).a, alphaMap.eval(clamp(coord + float2( 0, 1), edgeBounds.LT, edgeBounds.RB)).a); half3 alphaC2 = half3( alphaMap.eval(clamp(coord + float2( 1,-1), edgeBounds.LT, edgeBounds.RB)).a, alphaMap.eval(clamp(coord + float2( 1, 0), edgeBounds.LT, edgeBounds.RB)).a, alphaMap.eval(clamp(coord + float2( 1, 1), edgeBounds.LT, edgeBounds.RB)).a); half mainAlpha = alphaC1.y; // offset = (0,0) return half4($normal_filter(alphaC0, alphaC1, alphaC2, negSurfaceDepth), mainAlpha); } //--- Lighting --------------------------------------------------------------------- $pure half3 $surface_to_light(half lightType, half3 lightPos, half3 lightDir, half3 coord) { // Spot (> 0) and point (== 0) have the same equation return lightType >= 0 ? normalize(lightPos - coord) : lightDir; } $pure half $spotlight_scale(half3 lightDir, half3 surfaceToLight, half cosCutoffAngle, half spotFalloff) { const half kConeAAThreshold = 0.016; const half kConeScale = 1.0 / kConeAAThreshold; half cosAngle = -dot(surfaceToLight, lightDir); if (cosAngle < cosCutoffAngle) { return 0.0; } else { half scale = pow(cosAngle, spotFalloff); return (cosAngle < cosCutoffAngle + kConeAAThreshold) ? scale * (cosAngle - cosCutoffAngle) * kConeScale : scale; } } $pure half4 $compute_lighting(half3 color, half shininess, half materialType, half lightType, half3 normal, half3 lightDir, half3 surfaceToLight, half cosCutoffAngle, half spotFalloff) { // Point and distant light color contributions are constant, but // spotlights fade based on the angle away from its direction. if (lightType > 0) { color *= $spotlight_scale(lightDir, surfaceToLight, cosCutoffAngle, spotFalloff); } // Diffuse and specular reflections scale the light's color differently if (materialType == 0) { half coeff = dot(normal, surfaceToLight); color = saturate(coeff * color); return half4(color, 1.0); } else { half3 halfDir = normalize(surfaceToLight + half3(0, 0, 1)); half coeff = pow(dot(normal, halfDir), shininess); color = saturate(coeff * color); return half4(color, max(max(color.r, color.g), color.b)); } } half4 sk_lighting(shader normalMap, float2 coord, half depth, half shininess, half materialType, half lightType, half3 lightPos, half spotFalloff, half3 lightDir, half cosCutoffAngle, half3 lightColor) { half4 normalAndA = normalMap.eval(coord); half3 surfaceToLight = $surface_to_light(lightType, lightPos, lightDir, half3(coord, depth * normalAndA.a)); return $compute_lighting(lightColor, shininess, materialType, lightType, normalAndA.xyz, lightDir, surfaceToLight, cosCutoffAngle, spotFalloff); } //--- Arithmetic Blend ------------------------------------------------------------- half4 sk_arithmetic_blend(half4 src, half4 dst, half4 k, half pmClamp) { half4 color = saturate(k.x * src * dst + k.y * src + k.z * dst + k.w); color.rgb = min(color.rgb, max(color.a, pmClamp)); return color; } //--- Sparse Morphology ------------------------------------------------------------ half4 sk_sparse_morphology(shader child, float2 coord, half2 offset, half flip) { half4 aggregate = max(flip * child.eval(coord + offset), flip * child.eval(coord - offset)); return flip * aggregate; } //--- Linear Morphology ------------------------------------------------------------ half4 sk_linear_morphology(shader child, float2 coord, half2 offset, half flip, int radius) { // KEEP IN SYNC WITH CONSTANT IN `SkMorphologyImageFilter.cpp` const int kMaxLinearRadius = 14; half4 aggregate = flip * child.eval(coord); // case 0 only needs a single sample half2 delta = offset; for (int i = 1; i <= kMaxLinearRadius; ++i) { if (i > radius) break; aggregate = max(aggregate, max(flip * child.eval(coord + delta), flip * child.eval(coord - delta))); delta += offset; } return flip * aggregate; } //--- Overdraw --------------------------------------------------------------------- half4 sk_overdraw(half alpha, half4 color0, half4 color1, half4 color2, half4 color3, half4 color4, half4 color5) { return alpha < (0.5 / 255.) ? color0 : alpha < (1.5 / 255.) ? color1 : alpha < (2.5 / 255.) ? color2 : alpha < (3.5 / 255.) ? color3 : alpha < (4.5 / 255.) ? color4 : color5; }