# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for hardswish.""" import functools import numpy as np import tensorflow.compat.v1 as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function def _tflite_convert_verify_num_ops(tflite_convert_function, *args, **kwargs): """Verifies that the result of the conversion is a single op.""" num_ops = kwargs.pop("num_ops", 2) result = tflite_convert_function(*args, **kwargs) tflite_model_binary = result[0] if not result[0]: tf.compat.v1.logging.error(result[1]) # stderr from running tflite_convert. raise RuntimeError("Failed to build model: \n\n" + result[1]) interpreter = tf.lite.Interpreter(model_content=tflite_model_binary) interpreter.allocate_tensors() if len(interpreter.get_tensor_details()) != num_ops: raise RuntimeError( "Expected to generate two node graph got %s " % "\n".join(str(x) for x in interpreter.get_tensor_details())) return result @register_make_test_function() def make_hardswish_tests(options): """Make a set of tests to do hardswish.""" # Chose a set of parameters if options.run_with_flex: # Only Flex is able to execute on the data bigger than four dimension. test_parameters = [{ "input_shape": [[], [1], [2, 3], [1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3], [3, 1, 2, 4, 6], [2, 2, 3, 4, 5, 6]], }] else: test_parameters = [{ "input_shape": [[], [1], [2, 3], [1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3]], }] def build_graph(parameters): inp = tf.compat.v1.placeholder( dtype=tf.float32, name="input", shape=parameters["input_shape"]) out = inp * tf.nn.relu6(inp + np.float32(3)) * np.float32(1. / 6.) return [inp], [out] def build_inputs(parameters, sess, inputs, outputs): input_values = create_tensor_data( np.float32, parameters["input_shape"], min_value=-10, max_value=10) return [input_values], sess.run( outputs, feed_dict=dict(zip(inputs, [input_values]))) # Add additional validation if we are using converter. # Flex doesn't yet support this. if not options.run_with_flex: options.tflite_convert_function = functools.partial( _tflite_convert_verify_num_ops, options.tflite_convert_function, num_ops=2) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)