path: "tensorflow.optimizers.experimental.RMSprop" tf_class { is_instance: "" is_instance: "" is_instance: "" is_instance: "" is_instance: "" is_instance: "" member { name: "iterations" mtype: "" } member { name: "learning_rate" mtype: "" } member { name: "lr" mtype: "" } member_method { name: "__init__" argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'momentum\', \'epsilon\', \'centered\', \'clipnorm\', \'clipvalue\', \'global_clipnorm\', \'use_ema\', \'ema_momentum\', \'ema_overwrite_frequency\', \'jit_compile\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.0\', \'1e-07\', \'False\', \'None\', \'None\', \'None\', \'False\', \'0.99\', \'100\', \'True\', \'RMSprop\'], " } member_method { name: "add_variable" argspec: "args=[\'self\', \'shape\', \'dtype\', \'initializer\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\'], " } member_method { name: "add_variable_from_reference" argspec: "args=[\'self\', \'model_variable\', \'variable_name\', \'shape\', \'initial_value\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], " } member_method { name: "aggregate_gradients" argspec: "args=[\'self\', \'grads_and_vars\'], varargs=None, keywords=None, defaults=None" } member_method { name: "apply_gradients" argspec: "args=[\'self\', \'grads_and_vars\', \'name\', \'skip_gradients_aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'False\'], " } member_method { name: "build" argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" } member_method { name: "compute_gradients" argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "finalize_variable_values" argspec: "args=[\'self\', \'var_list\'], varargs=None, keywords=None, defaults=None" } member_method { name: "from_config" argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None" } member_method { name: "get_config" argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" } member_method { name: "minimize" argspec: "args=[\'self\', \'loss\', \'var_list\', \'tape\'], varargs=None, keywords=None, defaults=[\'None\'], " } member_method { name: "update_step" argspec: "args=[\'self\', \'gradient\', \'variable\'], varargs=None, keywords=None, defaults=None" } member_method { name: "variables" argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None" } }