#!/usr/bin/env python3.4 # # Copyright 2022 - The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import csv import itertools import numpy import json import os from acts import context from acts import base_test from acts.metrics.loggers.blackbox import BlackboxMappedMetricLogger from acts_contrib.test_utils.cellular.performance import cellular_performance_test_utils as cputils from acts_contrib.test_utils.cellular.performance.CellularThroughputBaseTest import CellularThroughputBaseTest from acts_contrib.test_utils.wifi import wifi_performance_test_utils as wputils from acts_contrib.test_utils.wifi.wifi_performance_test_utils.bokeh_figure import BokehFigure from functools import partial class CellularFr1RvrTest(CellularThroughputBaseTest): """Class to test single cell FR1 NSA sensitivity""" def __init__(self, controllers): base_test.BaseTestClass.__init__(self, controllers) self.testcase_metric_logger = ( BlackboxMappedMetricLogger.for_test_case()) self.testclass_metric_logger = ( BlackboxMappedMetricLogger.for_test_class()) self.publish_testcase_metrics = True self.testclass_params = self.user_params['nr_rvr_test_params'] self.tests = self.generate_test_cases( channel_list=['LOW', 'MID', 'HIGH'], schedule_scenario='FULL_TPUT', schedule_slot_ratio = 80, nr_ul_mcs=4, lte_dl_mcs_table='QAM256', lte_dl_mcs=4, lte_ul_mcs_table='QAM256', lte_ul_mcs=4, transform_precoding=0, nr_dl_mcs_table='Q256', nr_ul_mcs_table='Q64') def process_testclass_results(self): pass def process_testcase_results(self): if self.current_test_name not in self.testclass_results: return testcase_data = self.testclass_results[self.current_test_name] results_file_path = os.path.join( context.get_current_context().get_full_output_path(), '{}.json'.format(self.current_test_name)) with open(results_file_path, 'w') as results_file: json.dump(wputils.serialize_dict(testcase_data), results_file, indent=4) average_throughput_list = [] theoretical_throughput_list = [] average_power_list = [] nr_cell_index = testcase_data['testcase_params']['endc_combo_config']['lte_cell_count'] cell_power_list = testcase_data['testcase_params']['cell_power_sweep'][nr_cell_index] for result in testcase_data['results']: average_throughput_list.append( result['throughput_measurements']['nr_tput_result']['total']['DL']['average_tput']) theoretical_throughput_list.append( result['throughput_measurements']['nr_tput_result']['total']['DL']['theoretical_tput']) if self.power_monitor: average_power_list.append(result['average_power']) padding_len = len(cell_power_list) - len(average_throughput_list) average_throughput_list.extend([0] * padding_len) theoretical_throughput_list.extend([0] * padding_len) if self.power_monitor: average_power_list.extend([0] * padding_len) testcase_data['average_throughput_list'] = average_throughput_list testcase_data[ 'theoretical_throughput_list'] = theoretical_throughput_list testcase_data['average_power_list'] = average_power_list testcase_data['cell_power_list'] = cell_power_list plot = BokehFigure( title='Band {} - RvR'.format(testcase_data['testcase_params']['endc_combo_config']['cell_list'][nr_cell_index]['band']), x_label='Cell Power (dBm/SCS)', primary_y_label='PHY Rate (Mbps)', secondary_y_label='Power Consumption (mW)') plot.add_line( testcase_data['cell_power_list'], testcase_data['average_throughput_list'], 'Average Throughput', width=1) plot.add_line( testcase_data['cell_power_list'], testcase_data['theoretical_throughput_list'], 'Average Throughput', width=1, style='dashed') if self.power_monitor: plot.add_line( testcase_data['cell_power_list'], testcase_data['average_power_list'], 'Power Consumption (mW)', width=1, style='dashdot', y_axis='secondary') plot.generate_figure() self.log.info(self.log_path) output_file_path = os.path.join(self.log_path, '{}.html'.format(self.current_test_name)) BokehFigure.save_figure(plot, output_file_path) def get_per_cell_power_sweeps(self, testcase_params): nr_cell_index = testcase_params['endc_combo_config']['lte_cell_count'] start_atten = self.testclass_params['nr_cell_power_start'] # get current cell power start nr_cell_sweep = list( numpy.arange(start_atten, self.testclass_params['nr_cell_power_stop'], self.testclass_params['nr_cell_power_step'])) lte_sweep = [self.testclass_params['lte_cell_power'] ] * len(nr_cell_sweep) if nr_cell_index == 0: cell_power_sweeps = [nr_cell_sweep] else: cell_power_sweeps = [lte_sweep, nr_cell_sweep] return cell_power_sweeps def generate_test_cases(self, channel_list, **kwargs): test_cases = [] with open(self.testclass_params['nr_single_cell_configs'], 'r') as csvfile: test_configs = csv.DictReader(csvfile) for test_config, channel in itertools.product( test_configs, channel_list): if int(test_config['skip_test']): continue endc_combo_config = cputils.generate_endc_combo_config_from_csv_row( test_config) test_name = 'test_fr1_{}_{}'.format( test_config['nr_band'], channel.lower()) test_params = collections.OrderedDict( endc_combo_config=endc_combo_config, nr_dl_mcs=self.testclass_params['link_adaptation_config'], **kwargs) setattr(self, test_name, partial(self._test_throughput_bler, test_params)) test_cases.append(test_name) return test_cases