• Home
  • Raw
  • Download

Lines Matching +full:0 +full:ad +full:- +full:v2

20 …return x*2 - 1 + static_cast<Scalar>(pow(1+x,2)) + 2*sqrt(y*y+0) - 4 * sin(0+x) + 2 * cos(y+0) - e…  in foo()
21 //return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2; in foo()
29 return (p-Vector(Scalar(-1),Scalar(1.))).norm() + (p.array() * p.array()).sum() + p.dot(p); in foo()
57 v[0] = 2 * x[0] * x[0] + x[0] * x[1]; in operator ()()
58 v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1]; in operator ()()
61 v[0] += 0.5 * x[2]; in operator ()()
66 v[2] = 3 * x[1] * x[0] * x[0]; in operator ()()
80 j(0,0) = 4 * x[0] + x[1]; in operator ()()
81 j(1,0) = 3 * x[1]; in operator ()()
83 j(0,1) = x[0]; in operator ()()
84 j(1,1) = 3 * x[0] + 2 * 0.5 * x[1]; in operator ()()
88 j(0,2) = 0.5; in operator ()()
93 j(2,0) = 3 * x[1] * 2 * x[0]; in operator ()()
94 j(2,1) = 3 * x[0] * x[0]; in operator ()()
98 j(2,0) *= x[2]; in operator ()()
101 j(2,2) = 3 * x[1] * x[0] * x[0]; in operator ()()
102 j(2,2) = 3 * x[1] * x[0] * x[0]; in operator ()()
129 /* Integrator to test the AD. */ in operator ()()
130 o[0] = input[0] + input[1] * dt * _gain; in operator ()()
140 /* Integrator to test the AD. */ in operator ()()
141 o[0] = input[0] + input[1] * dt * _gain; in operator ()()
148 j(0, 0) = 1; in operator ()()
149 j(0, 1) = dt * _gain; in operator ()()
150 j(1, 0) = 0; in operator ()()
219 typedef AutoDiffScalar<Vector2f> AD; in test_autodiff_scalar() typedef
220 AD ax(p.x(),Vector2f::UnitX()); in test_autodiff_scalar()
221 AD ay(p.y(),Vector2f::UnitY()); in test_autodiff_scalar()
222 AD res = foo<AD>(ax,ay); in test_autodiff_scalar()
232 typedef AutoDiffScalar<Vector2f> AD; in test_autodiff_vector() typedef
233 typedef Matrix<AD,2,1> VectorAD; in test_autodiff_vector()
234 VectorAD ap = p.cast<AD>(); in test_autodiff_vector()
238 AD res = foo<VectorAD>(ap); in test_autodiff_vector()
259 typedef AutoDiffScalar<VectorXd> AD; in test_autodiff_hessian() typedef
260 typedef Matrix<AD,Eigen::Dynamic,1> VectorAD; in test_autodiff_hessian()
265 x(0).value()=s1; in test_autodiff_hessian()
269 x(0).derivatives().resize(2); in test_autodiff_hessian()
270 x(0).derivatives().setZero(); in test_autodiff_hessian()
271 x(0).derivatives()(0)= 1; in test_autodiff_hessian()
277 x(0).value().derivatives() = VectorXd::Unit(2,0); in test_autodiff_hessian()
281 for(int idx=0; idx<2; idx++) { in test_autodiff_hessian()
282 x(0).derivatives()(idx).derivatives() = VectorXd::Zero(2); in test_autodiff_hessian()
286 ADD y = sin(AD(s3)*x(0) + AD(s4)*x(1)); in test_autodiff_hessian()
288 VERIFY_IS_APPROX(y.value().derivatives()(0), y.derivatives()(0).value()); in test_autodiff_hessian()
290 VERIFY_IS_APPROX(y.value().derivatives()(0), s3*std::cos(s1*s3+s2*s4)); in test_autodiff_hessian()
292 VERIFY_IS_APPROX(y.derivatives()(0).derivatives(), -std::sin(s1*s3+s2*s4)*Vector2d(s3*s3,s4*s3)); in test_autodiff_hessian()
293 VERIFY_IS_APPROX(y.derivatives()(1).derivatives(), -std::sin(s1*s3+s2*s4)*Vector2d(s3*s4,s4*s4)); in test_autodiff_hessian()
295 ADD z = x(0)*x(1); in test_autodiff_hessian()
296 VERIFY_IS_APPROX(z.derivatives()(0).derivatives(), Vector2d(0,1)); in test_autodiff_hessian()
297 VERIFY_IS_APPROX(z.derivatives()(1).derivatives(), Vector2d(1,0)); in test_autodiff_hessian()
301 typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD; in bug_1222() typedef
303 const AD chi_3 = 1.0; in bug_1222()
305 const AD denom = chi_3 + _cv1_3; in bug_1222()
313 typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD; in bug_1223() typedef
316 const AD chi_3 = 1.0; in bug_1223()
317 const AD denom = 1.0; in bug_1223()
322 const AD t = min EIGEN_TEST_SPACE (denom / chi_3, 1.0); in bug_1223()
324 const AD t2 = min EIGEN_TEST_SPACE (denom / (chi_3 * _cv1_3), 1.0); in bug_1223()
338 typedef AutoDiffScalar<Matrix2d> AD; in bug_1261() typedef
339 typedef Matrix<AD,2,1> VectorAD; in bug_1261()
341 VectorAD v(0.,0.); in bug_1261()
342 const AD maxVal = v.maxCoeff(); in bug_1261()
343 const AD minVal = v.minCoeff(); in bug_1261()
348 typedef AutoDiffScalar<Vector2d> AD; in bug_1264() typedef
349 const AD s = 0.; in bug_1264()
350 const Matrix<AD, 3, 1> v1(0.,0.,0.); in bug_1264()
351 const Matrix<AD, 3, 1> v2 = (s + 3.0) * v1; in bug_1264() local
352 return v2(0).value(); in bug_1264()
358 typedef AutoDiffScalar<VectorXd> AD; in bug_1281() typedef
359 const AD c = 1.; in bug_1281()
360 AD x0(2,n,0); in bug_1281()
361 AD y1 = (AD(c)+AD(c))*x0; in bug_1281()
362 y1 = x0 * (AD(c)+AD(c)); in bug_1281()
363 AD y2 = (-AD(c))+x0; in bug_1281()
364 y2 = x0+(-AD(c)); in bug_1281()
365 AD y3 = (AD(c)*(-AD(c))+AD(c))*x0; in bug_1281()
366 y3 = x0 * (AD(c)*(-AD(c))+AD(c)); in bug_1281()
374 for(int i = 0; i < g_repeat; i++) { in EIGEN_DECLARE_TEST()