• Home
  • Raw
  • Download

Lines Matching full:statistics

1 x = """Test suite for statistics module, including helper NumericTestCase and
26 import statistics
189 py_statistics = import_helper.import_fresh_module('statistics',
191 c_statistics = import_helper.import_fresh_module('statistics',
200 self.assertEqual(getattr(py_statistics, fname).__module__, 'statistics')
675 # === Tests for the statistics module ===
680 module = statistics
707 self.assertTrue(hasattr(statistics, 'StatisticsError'))
709 issubclass(statistics.StatisticsError, ValueError),
710 errmsg % statistics.StatisticsError.__base__
721 self.assertEqual(statistics._exact_ratio(i), (i, 1))
727 self.assertEqual(statistics._exact_ratio(f), (n, 37))
730 self.assertEqual(statistics._exact_ratio(0.125), (1, 8))
731 self.assertEqual(statistics._exact_ratio(1.125), (9, 8))
734 num, den = statistics._exact_ratio(x)
739 _exact_ratio = statistics._exact_ratio
753 ratio = statistics._exact_ratio(x)
763 ratio = statistics._exact_ratio(nan)
774 ratio = statistics._exact_ratio(nan)
786 self.assertEqual(statistics._exact_ratio(inf), (inf, None))
787 self.assertEqual(statistics._exact_ratio(-inf), (-inf, None))
792 num, den = statistics._exact_ratio(nan)
805 num, den = statistics._exact_ratio(d)
809 num, den = statistics._exact_ratio(-d)
815 t = statistics._exact_ratio(Decimal("0.1234"))
820 t = statistics._exact_ratio(Decimal("1.234e7"))
826 t = statistics._exact_ratio(Decimal("1e2"))
828 t = statistics._exact_ratio(Decimal("1.47e5"))
838 self.assertTrue(statistics._isfinite(x))
843 self.assertFalse(statistics._isfinite(x))
848 self.assertFalse(statistics._isfinite(x))
877 self.assertIs(statistics._coerce(T, bool), T)
879 self.assertIs(statistics._coerce(MyClass, bool), MyClass)
883 self.assertIs(statistics._coerce(A, B), B)
884 self.assertIs(statistics._coerce(B, A), B)
900 self.assertRaises(TypeError, statistics._coerce, (A, B))
901 self.assertRaises(TypeError, statistics._coerce, (B, A))
907 self.assertIs(statistics._coerce(T, T), T)
961 x = statistics._convert(Fraction(71), int)
964 x = statistics._convert(Fraction(17), MyInt)
969 x = statistics._convert(Fraction(95, 99), Fraction)
974 x = statistics._convert(Fraction(71, 13), MyFraction)
979 x = statistics._convert(Fraction(-1, 2), float)
984 x = statistics._convert(Fraction(9, 8), MyFloat)
989 x = statistics._convert(Fraction(1, 40), Decimal)
994 x = statistics._convert(Fraction(-15, 16), MyDecimal)
1000 x = statistics._convert(inf, type(inf))
1005 x = statistics._convert(nan, type(nan))
1010 statistics._convert(None, float)
1019 new = list(statistics._fail_neg(values))
1026 it = statistics._fail_neg(seq)
1027 self.assertRaises(statistics.StatisticsError, next, it)
1033 next(statistics._fail_neg([-1], msg))
1034 except statistics.StatisticsError as e:
1053 self.assertRaises(statistics.StatisticsError, self.func, empty)
1185 # Common test cases for statistics._sum() function.
1191 T, value, n = statistics._sum(*args)
1192 return statistics._coerce(value, T)
1197 # Test cases for statistics._sum() function.
1202 self.func = statistics._sum
1257 self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000),
1259 self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000),
1261 T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000)
1273 result = statistics._sum([1, nan, 2])[1]
1286 result = statistics._sum([1, 2, inf, 3])[1]
1289 result = statistics._sum([1, 2, inf, 3, inf, 4])[1]
1305 result = statistics._sum([1, 2, inf, 3, -inf, 4])[1]
1313 self.assertTrue(math.isnan(statistics._sum(data)[1]))
1320 self.assertRaises(decimal.InvalidOperation, statistics._sum, data)
1326 self.assertRaises(decimal.InvalidOperation, statistics._sum, data)
1353 self.func = statistics.mean
1431 self.assertEqual(statistics.mean([d]), d)
1437 self.assertEqual(statistics.mean(
1443 self.assertEqual(statistics.mean([big]*n), big)
1444 self.assertEqual(statistics.mean([tiny]*n), tiny)
1449 self.func = statistics.harmonic_mean
1468 exc = statistics.StatisticsError
1560 with self.assertRaises(statistics.StatisticsError):
1562 with self.assertRaises(statistics.StatisticsError):
1564 with self.assertRaises(statistics.StatisticsError):
1571 self.func = statistics.median
1628 self.func = statistics.median
1640 self.func = statistics.median_low
1667 self.func = statistics.median_high
1696 self.func = statistics.median_grouped
1815 self.func = statistics.mode
1876 multimode = statistics.multimode
1885 fmean = statistics.fmean
1902 fmean = statistics.fmean
1903 StatisticsError = statistics.StatisticsError
1919 fmean = statistics.fmean
1929 fmean = statistics.fmean
1930 StatisticsError = statistics.StatisticsError
2021 self.func = statistics.pvariance
2065 self.func = statistics.variance
2070 self.assertRaises(statistics.StatisticsError, self.func, [x])
2111 self.func = statistics.pstdev
2116 expected = math.sqrt(statistics.pvariance(data))
2129 r = statistics._integer_sqrt_of_frac_rto(n, m)
2168 root: float = statistics._float_sqrt_of_frac(numerator, denonimator)
2172 self.assertEqual(statistics._float_sqrt_of_frac(0, 1), 0.0)
2174 statistics._float_sqrt_of_frac(-1, 1)
2176 statistics._float_sqrt_of_frac(1, -1)
2180 statistics._float_sqrt_of_frac(1, 0)
2183 … self.assertEqual(statistics._float_sqrt_of_frac(-2, -1), statistics._float_sqrt_of_frac(2, 1))
2196 self.assertEqual(statistics._decimal_sqrt_of_frac(numerator, denominator), root)
2209 self.assertEqual(statistics._decimal_sqrt_of_frac(0, 1), 0.0)
2211 statistics._decimal_sqrt_of_frac(-1, 1)
2213 statistics._decimal_sqrt_of_frac(1, -1)
2217 statistics._decimal_sqrt_of_frac(1, 0)
2220 … self.assertEqual(statistics._decimal_sqrt_of_frac(-2, -1), statistics._decimal_sqrt_of_frac(2, 1))
2226 self.func = statistics.stdev
2231 self.assertRaises(statistics.StatisticsError, self.func, [x])
2236 expected = math.sqrt(statistics.variance(data))
2246 geometric_mean = statistics.geometric_mean
2268 geometric_mean = statistics.geometric_mean
2286 geometric_mean = statistics.geometric_mean
2301 geometric_mean = statistics.geometric_mean
2302 StatisticsError = statistics.StatisticsError
2324 geometric_mean = statistics.geometric_mean
2341 geometric_mean = statistics.geometric_mean
2359 kde = statistics.kde
2360 StatisticsError = statistics.StatisticsError
2438 kernel_invcdfs = statistics._kernel_invcdfs
2439 kde = statistics.kde
2451 kde_random = statistics.kde_random
2452 StatisticsError = statistics.StatisticsError
2514 F_hat = statistics.kde(data, h, kernel, cumulative=True)
2533 quantiles = statistics.quantiles
2582 self.assertEqual(q2, statistics.median(data))
2588 quantiles = statistics.quantiles
2636 self.assertEqual(q2, statistics.median(data))
2644 quantiles = statistics.quantiles
2652 quantiles = statistics.quantiles
2675 quantiles = statistics.quantiles
2676 StatisticsError = statistics.StatisticsError
2704 with self.assertRaises(statistics.StatisticsError):
2705 statistics.covariance(x, y)
2706 with self.assertRaises(statistics.StatisticsError):
2707 statistics.correlation(x, y)
2708 with self.assertRaises(statistics.StatisticsError):
2709 statistics.linear_regression(x, y)
2720 with self.assertRaises(statistics.StatisticsError):
2721 statistics.covariance(x, y)
2722 with self.assertRaises(statistics.StatisticsError):
2723 statistics.correlation(x, y)
2724 with self.assertRaises(statistics.StatisticsError):
2725 statistics.linear_regression(x, y)
2738 self.assertAlmostEqual(statistics.correlation(x, y), result)
2739 self.assertAlmostEqual(statistics.covariance(x, y), result)
2744 self.assertAlmostEqual(statistics.correlation(x, y), 0.5)
2745 self.assertAlmostEqual(statistics.covariance(x, y), 5)
2748 self.assertAlmostEqual(statistics.correlation(x, y), 1)
2749 self.assertAlmostEqual(statistics.covariance(x, y), 0.1)
2757 actual = statistics._sqrtprod(x, y)
2762 self.assertEqual(statistics._sqrtprod(x, y), target)
2767 self.assertEqual(statistics._sqrtprod(smallest, smallest), smallest)
2769 self.assertEqual(statistics._sqrtprod(biggest, biggest), biggest)
2780 actual = statistics._sqrtprod(x, y)
2801 self.assertEqual(statistics._sqrtprod(x, y), target)
2818 new = statistics._sqrtprod(x, y)
2826 …# https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-gui…
2835 self.assertAlmostEqual(statistics.correlation(reading, mathematics, method='ranked'),
2839 statistics.correlation(reading, mathematics, method='bad_method')
2846 with self.assertRaises(statistics.StatisticsError):
2847 statistics.linear_regression(x, y)
2859 slope, intercept = statistics.linear_regression(x, y)
2866 slope, intercept = statistics.linear_regression(x, y, proportional=True)
2873 slope, intercept = statistics.linear_regression(x, y)
2876 slope, intercept = statistics.linear_regression(x, y, proportional=True)
3297 # Swapping the sys.modules['statistics'] is to solving the
3299 # Can't pickle <class 'statistics.NormalDist'>:
3300 # it's not the same object as statistics.NormalDist
3304 sys.modules['statistics'] = self.module
3307 sys.modules['statistics'] = statistics
3314 sys.modules['statistics'] = self.module
3317 sys.modules['statistics'] = statistics
3325 tests.addTests(doctest.DocTestSuite(statistics))