• Home
  • Raw
  • Download

Lines Matching full:dim

32 Tensor do_trapezoid(const Tensor& y, const Tensor& dx, int64_t dim) {  in do_trapezoid()  argument
33 Tensor left = y.slice(dim, 0, -1); in do_trapezoid()
34 Tensor right = y.slice(dim, 1); in do_trapezoid()
37 return ((left + right) * dx).sum(dim) / 2.; in do_trapezoid()
42 Tensor do_trapezoid(const Tensor& y, double dx, int64_t dim) { in do_trapezoid() argument
43 return (y.sum(dim) - (y.select(dim, 0) + y.select(dim, -1)) * (0.5)) * dx; in do_trapezoid()
46 Tensor zeros_like_except(const Tensor& y, int64_t dim) { in zeros_like_except() argument
48 dim = maybe_wrap_dim(dim, y.dim()); in zeros_like_except()
49 sizes.erase(sizes.begin() + dim); in zeros_like_except()
53 Tensor do_cumulative_trapezoid(const Tensor& y, const Tensor& dx, int64_t dim) { in do_cumulative_trapezoid() argument
54 Tensor left = y.slice(dim, 0, -1); in do_cumulative_trapezoid()
55 Tensor right = y.slice(dim, 1); in do_cumulative_trapezoid()
57 return ((left + right) * dx).cumsum(dim) / 2.; in do_cumulative_trapezoid()
60 Tensor do_cumulative_trapezoid(const Tensor& y, double dx, int64_t dim) { in do_cumulative_trapezoid() argument
61 Tensor left = y.slice(dim, 0, -1); in do_cumulative_trapezoid()
62 Tensor right = y.slice(dim, 1); in do_cumulative_trapezoid()
64 return (dx /2. * (left + right)).cumsum(dim); in do_cumulative_trapezoid()
85 Tensor trapezoid(const Tensor& y, const Tensor& x, int64_t dim) { in trapezoid() argument
86 dim = maybe_wrap_dim(dim, y); in trapezoid()
89 if (y.sym_size(dim) == 0) { in trapezoid()
90 return zeros_like_except(y, dim); in trapezoid()
96 if (x.dim() == 1) { in trapezoid()
98 // dimension (1,1,...,n,...,1,1) based on dim and y.dim() so that, later on, 'dx' in trapezoid()
100 …TORCH_CHECK(x.sym_size(0) == y.sym_size(dim), "trapezoid: There must be one `x` value for each sam… in trapezoid()
101 SymDimVector new_sizes(y.dim(), 1); // shape = [1] * y. in trapezoid()
102 new_sizes[dim] = x.sym_size(0); // shape[axis] = d.shape[0] in trapezoid()
104 } else if (x.dim() < y.dim()) { in trapezoid()
107 …// This allows the subsequent slicing operations to proceed with any 'dim' without going out of bo… in trapezoid()
108 SymDimVector new_sizes = add_padding_to_shape(x.sym_sizes(), y.dim()); in trapezoid()
113 // Note the .slice operation reduces the dimension along 'dim' by 1, in trapezoid()
115 Tensor x_left = x_viewed.slice(dim, 0, -1); in trapezoid()
116 Tensor x_right = x_viewed.slice(dim, 1); in trapezoid()
119 return do_trapezoid(y, dx, dim); in trapezoid()
122 Tensor trapezoid(const Tensor& y, const Scalar& dx, int64_t dim) { in trapezoid() argument
124 if (y.sym_size(dim) == 0) { in trapezoid()
125 return zeros_like_except(y, dim); in trapezoid()
129 return do_trapezoid(y, dx.toDouble(), dim); in trapezoid()
132 Tensor trapz(const Tensor& y, const Tensor& x, int64_t dim) { in trapz() argument
133 return at::native::trapezoid(y, x, dim); in trapz()
136 Tensor trapz(const Tensor& y, double dx, int64_t dim) { in trapz() argument
137 return at::native::trapezoid(y, dx, dim); in trapz()
140 Tensor cumulative_trapezoid(const Tensor& y, const Tensor& x, int64_t dim) { in cumulative_trapezoid() argument
141 dim = maybe_wrap_dim(dim, y); in cumulative_trapezoid()
144 if (x.dim() == 1) { in cumulative_trapezoid()
146 …TORCH_CHECK(x.sym_size(0) == y.sym_size(dim), "cumulative_trapezoid: There must be one `x` value f… in cumulative_trapezoid()
147 SymDimVector new_sizes(y.dim(), 1); // shape = [1] * y. in cumulative_trapezoid()
148 new_sizes[dim] = x.sym_size(0); // shape[axis] = d.shape[0] in cumulative_trapezoid()
150 } else if (x.dim() < y.dim()) { in cumulative_trapezoid()
152 SymDimVector new_sizes = add_padding_to_shape(x.sym_sizes(), y.dim()); in cumulative_trapezoid()
157 Tensor x_left = x_viewed.slice(dim, 0, -1); in cumulative_trapezoid()
158 Tensor x_right = x_viewed.slice(dim, 1); in cumulative_trapezoid()
161 return do_cumulative_trapezoid(y, dx, dim); in cumulative_trapezoid()
164 Tensor cumulative_trapezoid(const Tensor& y, const Scalar& dx, int64_t dim) { in cumulative_trapezoid() argument
168 return do_cumulative_trapezoid(y, dx.toDouble(), dim); in cumulative_trapezoid()