Lines Matching full:generator
22 # torch.jit.trace does not properly capture the generator manual seed
23 # and thus is non deterministic even if the generator is manually seeded
24 @skipIfLegacyJitExecutor("legacy JIT executor does not support Generator type")
28 generator = torch.Generator()
29 generator.seed()
30 generator.manual_seed(2023)
31 generator.initial_seed()
33 tensor.uniform_(0, 1, generator=generator)
38 # Run this 3 times to ensure that the generator is being manually seeded
45 # Change the seed of the default generator to
46 # check that we're using the generator from the
55 generator = torch.Generator()
56 generator.seed()
57 generator.manual_seed(2023)
58 generator.initial_seed()
60 tensor.normal_(-1.0, 1.0, generator=generator)
65 # Run this 3 times to ensure that the generator is being manually seeded
72 # Change the seed of the default generator to
73 # check that we're using the generator from the
83 # check that calling manual seed for the default generator works
101 def f(generator: torch.Generator): argument
103 tensor.normal_(-1.0, 1.0, generator=generator)
106 generator = torch.Generator()
107 generator.manual_seed(2023)
109 script_f = torch.jit.script(f, (generator,))
112 generator = torch.Generator()
113 generator.manual_seed(2023 + i)
117 eager_tensor = f(generator)
119 generator = torch.Generator()
120 generator.manual_seed(2023 + i)
124 script_tensor = script_f(generator)
137 def reset_linear(self, module, generator): argument
139 module.weight, a=math.sqrt(5), generator=generator
143 generator = torch.Generator()
144 generator.manual_seed(1)
145 self.reset_linear(self.foo, generator)
147 generator = torch.Generator()
148 generator.manual_seed(2)
149 self.reset_linear(self.bar, generator)
155 generator = torch.Generator()
156 generator.manual_seed(3)
158 r.normal_(0.0, 1.0, generator=generator)
175 # Run this 3 times so make sure that the generator seed is being set