• Home
  • Raw
  • Download

Lines Matching full:rand

54         p = torch.rand(10, requires_grad=True, dtype=torch.float64)
55 grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
56 mbuff = torch.rand(10, requires_grad=True, dtype=torch.float64)
72 p = torch.rand(10, requires_grad=True, dtype=torch.float64)
73 grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
77 state["exp_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
78 state["exp_avg_sq"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
79 state["max_exp_avg_sq"] = torch.rand(
97 p = torch.rand(10, requires_grad=True, dtype=torch.float64)
98 grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
100 state["square_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
101 state["momentum_buffer"] = torch.rand(
105 state["grad_avg"] = 1e-2 * torch.rand(
129 p = torch.rand(10, requires_grad=True, dtype=torch.float64)
130 grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
134 state["square_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
135 state["acc_delta"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
150 p = torch.rand(10, requires_grad=True, dtype=torch.float64)
151 grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
155 state["sum"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
170 p = torch.rand(10, requires_grad=True, dtype=torch.float64)
171 grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
175 state["exp_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
176 state["exp_inf"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
195 p = torch.rand(10, requires_grad=True, dtype=torch.float64)
196 grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
202 state["ax"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
218 p = torch.rand(10, requires_grad=True, dtype=torch.float64)
219 grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
223 state["prev"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
224 state["step_size"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
240 p = torch.rand(10, requires_grad=True, dtype=torch.float64)
241 grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
245 state["exp_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
246 state["exp_avg_sq"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
247 state["max_exp_avg_sq"] = torch.rand(
265 p = torch.rand(10, requires_grad=True, dtype=torch.float64)
266 grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
270 state["exp_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
271 state["exp_avg_sq"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
300 p = torch.rand(10, requires_grad=True, dtype=torch.float64)
301 grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
305 state["exp_avg"] = torch.rand(10, requires_grad=True, dtype=torch.float64)
306 state["exp_avg_sq"] = torch.rand(10, requires_grad=True, dtype=torch.float64)