• Home
  • Raw
  • Download

Lines Matching full:norm

43     x: TensorLikeType, norm: NormType, signal_numel: int, forward: bool
46 torch._check(norm in _NORM_VALUES, lambda: f"Invalid normalization mode: {norm}")
48 if norm == "ortho":
51 normalize = (not forward and (norm is None or norm == "backward")) or (
52 forward and norm == "forward"
121 norm: NormType,
140 return _apply_norm(output, norm=norm, signal_numel=last_dim_size, forward=forward)
148 norm: NormType,
168 ret = _apply_norm(ret, norm, dim_size, forward)
177 norm: NormType,
195 return _apply_norm(ret, norm, dim_size, forward)
204 norm: NormType = None,
207 return _fft_c2c("fft", input, n, dim, norm, forward=True)
209 return _fft_r2c("fft", input, n, dim, norm, forward=True, onesided=False)
218 norm: NormType = None,
221 return _fft_c2c("ifft", input, n, dim, norm, forward=False)
223 return _fft_r2c("ifft", input, n, dim, norm, forward=False, onesided=False)
232 norm: NormType = None,
234 return _fft_r2c("rfft", input, n, dim, norm, forward=True, onesided=True)
243 norm: NormType = None,
245 return _fft_c2r("irfft", input, n, dim, norm, forward=False)
254 norm: NormType = None,
256 return _fft_c2r("hfft", input, n, dim, norm, forward=True)
265 norm: NormType = None,
267 return _fft_r2c("ihfft", input, n, dim, norm, forward=False, onesided=True)
344 norm: NormType,
355 return _apply_norm(output, norm=norm, signal_numel=_prod(shape), forward=forward)
364 norm: NormType = None,
368 return _fftn_c2c("fftn", x, shape, dim, norm, forward=True)
377 norm: NormType = None,
381 return _fftn_c2c("ifftn", x, shape, dim, norm, forward=False)
390 norm: NormType = None,
400 return _apply_norm(out, norm=norm, signal_numel=_prod(shape), forward=True)
409 norm: NormType = None,
423 tmp = _apply_norm(tmp, norm=norm, signal_numel=shape[0], forward=False)
428 return _apply_norm(tmp, norm=norm, signal_numel=_prod(shape), forward=False)
471 norm: NormType = None,
479 return _apply_norm(out, norm, _prod(out.shape[d] for d in dim), forward=False)
488 norm: NormType = None,
497 tmp = _apply_norm(tmp, norm, _prod(shape[:-1]), forward=True)
500 return _apply_norm(out, norm, last_dim_size, forward=True)
509 norm: NormType = None,
511 return torch.fft.fftn(input, s=s, dim=dim, norm=norm)
520 norm: NormType = None,
522 return torch.fft.ifftn(input, s=s, dim=dim, norm=norm)
531 norm: NormType = None,
533 return torch.fft.rfftn(input, s=s, dim=dim, norm=norm)
542 norm: NormType = None,
544 return torch.fft.irfftn(input, s=s, dim=dim, norm=norm)
553 norm: NormType = None,
555 return torch.fft.hfftn(input, s=s, dim=dim, norm=norm)
564 norm: NormType = None,
566 return torch.fft.ihfftn(input, s=s, dim=dim, norm=norm)