• Home
  • Raw
  • Download

Lines Matching full:triu

1956   // tril(L^H gL) = tril(L^H (triu(gL, 1) + tril(gL)))  in cholesky_backward()
1957 // = tril(L^H tril(gL)) + tril(L^H triu(gL, 1)) in cholesky_backward()
1959 // since tril(L^H triu(gL, 1)) = 0, as L^H triu(gL, 1) is upper triangular in cholesky_backward()
3917 // and define syminv(X) = triu(X) - 0.5 * diag(X) the inverse of in linalg_qr_jvp()
3918 // sym : Triu(k, diag \in \mathbb{R}) -> Her(k) to give in linalg_qr_jvp()
3952 auto ret = X.triu(); in linalg_qr_jvp()
4009 // need are syminv*(R) = 0.5 * (R.triu() + R.triu()^H - Re diag(R)) sym*(X) = in linalg_qr_backward()
4011 // syminvadj(triu(gR R^H - Q^H gQ)))R^{-H} in linalg_qr_backward()
4065 gA = Q.matmul(syminvadj(gA.triu())); in linalg_qr_backward()
4378 grad_a = grad_a.triu((int)unitriangular); in triangular_solve_backward()
4428 const Tensor proj_A_t = upper ? A_t.triu(static_cast<int>(unitriangular)) in linalg_solve_triangular_forward_AD()
4466 // triangular matrices of the formula above, i.e. simply taking triu (resp. in linalg_solve_triangular_backward()
4485 G_A = upper ? G_A.triu(static_cast<int>(unitriangular)) in linalg_solve_triangular_backward()
5655 // 1_U = 1.triu(),
5720 // gU = gR.triu() in linalg_lu_solve_LU()
5725 // gU = (L^H gR U^{-H}).triu() in linalg_lu_solve_LU()
5750 return gL + gR.triu(); in linalg_lu_solve_LU()
5758 // gU = (L^H gR U^{-H}).triu() in linalg_lu_solve_LU()
5761 .triu(); in linalg_lu_solve_LU()
5802 auto U = LU.triu(); in linalg_lu_solve_jvp()
5804 U, dLU.triu() + R.matmul(U), /*upper*/ true); in linalg_lu_solve_jvp()
5819 U, L.matmul(dLU.triu()), /*upper*/ true, /*left*/ false) + in linalg_lu_solve_jvp()
5950 return n == k ? U.triu() : U.narrow_symint(-1, 0, k).triu(); in lu_unpack_backward()
5959 return L_grad.tril(-1) + U_grad.triu(); in lu_unpack_backward()
5979 return U_grad.triu(); in lu_unpack_backward()
5984 {U_grad.triu(), at::zeros_symint(size, U_grad.options())}, in lu_unpack_backward()
6475 A_grad = A_grad.defined() ? A_grad + U_grad.matmul(U.mH()).triu() in linalg_lu_backward()
6476 : U_grad.matmul(U.mH()).triu(); in linalg_lu_backward()
6504 A_grad = A_grad.defined() ? A_grad - U_grad.triu().matmul(U.mH()) in linalg_lu_backward()
6505 : -U_grad.triu().matmul(U.mH()); in linalg_lu_backward()
6515 at::cat({A_grad + get_U1(U_grad).triu(), get_U2(U_grad)}, /*dim=*/-1); in linalg_lu_backward()
6551 A_grad.triu(), in linalg_lu_backward()
6635 auto dU1 = dK.triu().matmul(U1); in linalg_lu_jvp()
6652 // dL2 := PdA2 U^{-1} - L2 dK.triu() in linalg_lu_jvp()
6657 L2.matmul(dK.triu()); in linalg_lu_jvp()