Lines Matching full:e2
115 // Convert to binary float m2 * 2^e2, while retaining information about in s2f()
117 let e2: i32; in s2f() localVariable
131 e2 = floor_log2(m10) in s2f()
136 // We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)]. in s2f()
138 let j = e2 in s2f()
146 // [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2. in s2f()
147 // This can only be the case if 2^e2 divides m10 * 10^e10, which in turn in s2f()
149 // greater than e2. If e2 is less than e10, then the result must be in s2f()
152 e2 < e10 || e2 - e10 < 32 && multiple_of_power_of_2_32(m10, (e2 - e10) as u32); in s2f()
154 e2 = floor_log2(m10) in s2f()
159 // We now compute [m10 * 10^e10 / 2^e2] = [m10 / (5^(-e10) 2^(e2-e10))]. in s2f()
160 let j = e2 in s2f()
168 // [m10 / (5^(-e10) 2^(e2-e10))] == m10 / (5^(-e10) 2^(e2-e10)) in s2f()
170 // If e2-e10 >= 0, we need to check whether (5^(-e10) 2^(e2-e10)) in s2f()
172 // e2-e10. in s2f()
174 // If e2-e10 < 0, we have actually computed [m10 * 2^(e10 e2) / in s2f()
176 // 2^(e10-e2)), which is the case iff pow5(m10 * 2^(e10-e2)) = pow5(m10) in s2f()
178 trailing_zeros = (e2 < e10 in s2f()
179 || (e2 - e10 < 32 && multiple_of_power_of_2_32(m10, (e2 - e10) as u32))) in s2f()
184 let mut ieee_e2 = i32::max(0, e2 + FLOAT_EXPONENT_BIAS as i32 + floor_log2(m2) as i32) as u32; in s2f()
198 .wrapping_sub(e2) in s2f()